Introduction to the
Unified Process

(B)

Iterative, incremental development
and your project

You now have some understanding of the advantages of the
iterative and incremental approach to development.

But you need to know more about your project's process
framework to understand how you will proceed, what you will
produce at each stage and why.

You will use the Unified Process in your project- the most
popular and influential iterative and incremental process
framework.

Widely used in industry and incorporated into hybrid agile
approaches such as Disciplined Agile Delivery (2012).

It is the most useful process framework to know

COMP3297: Introduction to Software Engineering

B e e e e e EREEEERE]]]]i!l”aa

”Unified Process (UP) structure

The UP organizes the product development spiral into 4 sequential
phases. Each phase has its own distinct objectives and character:

Inception
Elaboration
Construction
Transition

There are many ways to break projects into iterations within the UP
framework, but all iterations in all phases are driven by use cases with a
focus on risk reduction:

- use cases are specified and analysed,
- use cases are designed and implemented ("realized"),
- use cases are the source of test cases.

oM 3

Pl
A A AR AR L

Phases of the Unified Process

No matter how you break into iterations, three anchor points are UP invariants

Inception Elaboration Construction Transition

Feasibility 10C

Iterations

Usz Product

LCO Architecture :
3 Iterations Releases

/r;l L0

These re major milestones - commitment and progress checkpoints
added to

piral. They are called:

Life Cycle Objectives (LCO). Here you are ready to commit to develop an architecture.
Life Cycle Architecture (LCA). Here you are ready to commit to develop the product.
Initial Operational Capability (I0C). Here you are ready to commit to put it into use.

The phase gates are go/no-go decision points. They are "gates" because
you can’t pass them unless you have achieved the objectives of the phase.

If a project is going to fail, then you want to stop it as early as possible -
this is another mechanism for reducing risk.

COMP3297: Introduction to Software Engineering

i e e e ey

UP Phases - a simplified view that you've already seen!

Inception Elaboration Construction

Inception: Understand what to build

2 Vision, high-level requirements, business case
@ Addresses business risks

Elaboration: Understand how to build it

u Verifiedbaseline architecture, most requirements detailed
m Addresses architectural/technical risks

Construction: Build the product

@ Working product, system test complete
= Addresses logistical risks

Transition: Validate solution

m Stakeholder acceptance
@ Addresses delivery and roll-out risks

COMP3297: Introduction to Software Engineering 5

\
T
S
T
R
U
C
T
U
R
E

Business Modeling
Requirements

Analysis & Design

Implementation
Test

Deployment

Configuration
& Change Mgmt

Project Management
Environment

Unified Process framework

T

JJJJJJJJJJJJJJJ EreEE)

|
L
)

]

iteration
/ Phases
Inception Construction || Transition

4

A distinct
sequence of
activities:--

---with an
established
plan and
evaluation
criteria---

---resulting in
an executable
release.

Initial

COMP3297: Introduction to Software Engineering

Tran
#2

Iterations

TIME

If you don’t
understand
this diagram,
you don’t
understand
the Unified
Process!

Main artefacts of the Unified Process

Disciplines
Business Modeling
Requirements

Analysis & Design

Implementation
Test

Deployment

Configuration
& Change Mgmt

Project Management
Environment

Phases

Inception

Elaboration

Construction

Transition

Vision and Scope

Use Case Model

Domain model, DCD
and interaction models

—— e

Test cases, procedures

..-—......—-...--.i.—....-_—-“

'
i
i
i
Ih

TIME

COMP3297: Introduction to Software Engineering

*F
Const || Const | Const || Tran (| Tran
S bt | B #1 ” #2 N #1 || #2
Iterations

Unified Process -
Rough Planning

EEEEEEEREEERE RN RN RN RN RN RN RN RN RN RN R ENE RN ENEEEEEE

R ¥
1 T e i D B B B R R HI||||

Three kinds of planning

A single, very coarse-grained Project Plan. The overall
profile for the project. Big milestones on a timeline

Phase Plan. Iterations in a phase and their objectives.

This is also at the level of detail that upper management
IS interested in.

Fine-grained lteration Plans, one per iteration. Detailed

f ~ planning within a time-boxed iteration.
"Time-boxed" means fixed length and slipping the end
date is not allowed. If it seems the work of an iteration
I Is taking too long, then remove tasks.

Handle them in a future iteration if still needed.

COMP3297: Introduction to Software Engineering

The Project Plan

Default Effort/Schedule Distributions

Medium size and effort.

Begin with nominal profiles based First development cycle of
on effort estimates and knowledge the product.. _
of typical project profiles. No pre-existing architecture.

Small number of risks and

unknowns.

Rough defaults, extracted fro

COMP3297: Introduction to Software Engineering 10

IIIIiE[[LLL 11111111111111111

The Default Profile

K From the defaults we can
construct an effort profile

In industry, we
use the profile to
determine, for
example, rough
staffing levels.

Resources

»
>

10% 30% 50% 10% Time
Inception Elaboration Construction Transition

Now we have an effort profile, we can begin to consider the nature
of this particular project and modify the profile accordingly.

COMP3297: Introduction to Software Engineering 11

JJJJJJJJJJJ bl

L

Duration of an Iteration - TimeBoxing in the UP

If too short: there won’t be time to finish sufficient new work.
Also, there is a management overhead for each
iteration.

If too long: the complexity of the iteration increases. Also,
feedback from users comes too late. It defeats
the purpose of using UP

Around 2 to 6 weeks works well.

In industry, larger teams require longer because of the amount
of coordination and communication needed.

In agile development with small teams, iterations are often
shorter - 1 to 4 weeks.

COMP3297: Introduction to Software Engineering 12

Typical UP timeboxes

..... iR

Project Length Number of Duration of Iterations Distribution
People
4 months 3 2-3 weeks 1,1,3,1
8 months 10 4 weeks 1, 2, 3,2
20 months 80 7-8 2,3,4,2

Long iterations need internal milestones to manage them effectively.

With big teams, each sub-system team can still do shorter “local”
iterations by breaking each long iteration into several smaller ones.

Other approaches such as Scrum try to scale by increasing the

number of teams rather than making teams bigger. 9 members is a

common upper limit on team size.

COMP3297: Introduction to Software Engineering

13

iR

Timeboxing in practice

@ Gives a series of close, achievable deadlines
@ Allows for tighter control, better decisions
@ Good for team, good for client

Never slip the timebox deadline: do less.
Track progress and adjust scope early.

The trick to making this work is to select the right stuff to postpone.
These features are not automatically included in the next iteration.

This keeps focus on the important goals and forces tradeoffs. Also
prevents the project from grinding to a halt.

Short iterations need to be scoped very carefully.

Timeboxes don’t have to be the same length throughout the
project, but if they are it helps the team develop a “rhythm?”.

COMP3297: Introduction to Software Engineering 14

1111111111111111111

MG

How Many Iterations in standard UP?

Inception

Sometimes O (or very short), particularly for a maintenance release.

More (1-2) if:

- You need to develop requirements/build Ul prototype
- You need to demonstrate a proof of concept

- You need to make the business case and find funding

] These are hard

Minimum of 1 if building on a well-established architectural framework.

If not, then 2 is better to achieve a good architectural baseline (1 for the
architectural prototype, 1 for the architectural baseline).

3 if there are many risks or new factors.

COMP3297: Introduction to Software Engineering That’s 1 to 5 so far g

L

Standard UP iterations (cont.)

Construction

These are expensive

At least 1 leading to the beta release.
Usually one more for a partially-complete system before beta.

Often good reasons to add a third for larger projects. There is
a lot of work in Construction

Transition
Usually 1 for the transition from beta release to final product.
Possibly 2, to allow for more feedback and rework.

Thus:

A total of between 3 and 10 iterations

COMP3297: Introduction to Software EngineeflotsM IS Eal=Naa[ok Moo palaglelaN=Tas[<

ARRRRAEEEE

Rough Rule for UP executables for Normal Projects

JJJJJJJJJJJJJJJ

A typical mid-size project will deliver 6 or more executables:

One exploratory prototype in Inception

Two Iin Elaboration — an architectural prototype and a baseline
Two Iin Construction — alpha and beta releases

One in transition — the final product release

More agile projects tend to use
shorter iterations and more of them.

COMP3297: Introduction to Software Engineering 17

