
6
.1

O
S STRUCTURES

Protection
Low

-level M
echanism

s
Authentication
Access M

atrix
O

S
 S

tru
c
tu

re
s

D
u

a
l-m

o
d

e
 O

p
e
ra

tio
n

, K
e
rn

e
ls

 &
 M

ic
ro

k
e
rn

e
ls

M
a
n

d
a
to

ry
 A

c
c
e
s
s
 C

o
n

tro
l, pledge(2)

6
.2

DUAL-M
ODE OPERATION

Sim
ply w

ant to stop buggy (or m
alicious) program

 from
 doing bad things

Trust boundary betw
een user a

p
p

lic
a
tio

n and the O
S

U
se hardw

are support to differentiate betw
een (at least) tw

o m
odes of operation

1. U
ser M

ode : w
hen executing on behalf of a user (i.e. application program

s).
2. Kernel M

ode : w
hen executing on behalf of the O

S
M

ake certain instructions only possible in kernel m
ode, indicated by m

o
d

e
 b

it

E.g., x86: Rings 0--3, ARM
 has tw

o m
odes plus IRQ, Abort and FIQ

O
ften "nested" (per x86 rings): further inside can do strictly m

ore. N
ot ideal —

 e.g.,
stop kernel m

essing w
ith applications —

 but disjoint/overlapping perm
issions hard

6
.3

KERNEL-BASED OPERATING SYSTEM
S

Applications can't do IO
 due to protection so the O

S
does it on their behalf

This m
eans w

e need a secure w
ay for application to

invoke O
S: a special (unprivileged) instruction to

transition from
 user to kernel m

ode

Generally called a tra
p or a s

o
ftw

a
re

 in
te

rru
p

t since
operates sim

ilarly to (hardw
are) interrupt...

O
S services accessible via softw

are interrupt
m

echanism
 called s

y
s
te

m
 c

a
lls

O
S has vectors to handle traps, preventing application from

 leaping to kernel m
ode

and then just doing w
hatever it likes

Alternative is for O
S to em

ulate for application, and check every instruction, as used
in som

e virtualization system
s, e.g., Q

EM
U

6
.4

M
ICROKERNEL OPERATING SYSTEM

S
W

e've protected "privileged instructions" via dual-m
ode operation, m

em
ory via

special hardw
are, and the CPU

 via use of a tim
er. But now

 applications can't do
m

uch directly and m
ust use O

S to do it on their behalf

O
S m

ust be very stable to support apps, so becom
es hard to extend

Alternative is m
ic

ro
k
e
rn

e
ls: m

ove O
S services into

(local) servers, w
hich m

ay be privileged

Increases both m
odularity and extensibility

Still access kernel via system
 calls, but need new

 w
ays

to access servers: In
te

r-P
ro

c
e
s
s
 C

o
m

m
u

n
ic

a
tio

n (IPC)
schem

es

Given talking to servers (largely) replaces trapping,
need IPC schem

es to be extrem
ely efficient
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6
.5

KERNELS VS M
ICROKERNELS

So w
hy isn't everything a m

icrokernel?

Lots of IPC adds overhead, so m
icrokernels (perceived as) usually perform

ing less
w

ell
M

icrokernel im
plem

entation som
etim

es tricky: need to w
orry about

synchronisation
M

icrokernels often end up w
ith redundant copies of O

S data structures

Thus m
any com

m
on O

Ss blur the distinction betw
een kernel and m

icrokernel.

E.g. Linux is "kernel", but has kernel m
odules and certain servers.

E.g. W
indow

s N
T w

as originally m
icrokernel (3.5), but now

 (4.0 onw
ards) pushed

lots back into kernel for perform
ance

U
nclear w

hat the best O
S structure is, or how

 m
uch it really m

atters...

6
.6

VIRTUAL M
ACHINES AND CONTAINERS

M
ore recently, trend tow

ards encapsulating applications differently. Roughly aim
ed

tow
ards m

aking applications appear as if they're the only application running on
the system

. Particularly relevant w
hen building system

s using m
ic

ro
s
e
rv

ic
e
s.

Protection, or is
o

la
tio

n at a different level

V
irtu

a
l M

a
c
h

in
e
s encapsulate an entire running system

, including the O
S, and

then boot the VM
 over a hypervisor

E.g., Xen, VM
W

are ESX, H
yper-V

C
o

n
ta

in
e
rs expose functionality in the O

S so that each container acts as a
separate entity even though they all share the sam

e underlying O
S functionality

E.g., Linux Containers, FreeBSD
 Jails, Solaris Zones

6
.7

M
ANDATORY ACCESS CONTROL

https://xkcd.com
/1200/

From
 a user point of view

, now
adays one often w

ants to
protect applications from

 each other, all ow
ned by a

single user. Indeed, w
ith personal single-user m

achines
now

 com
m

on (phones, tablets, laptops), arguable that
protection m

odel is m
ism

atched

M
a
n

d
a
to

ry
 A

c
c
e
s
s
 C

o
n

tro
l (M

AC) m
andates expression

of policies constraining interaction of system
 users

E.g., O
SX and iO

S Sandbox uses subject/object labelling
to im

plem
ent access-control for privileges and various

resources (filesystem
, com

m
unication, APIs, etc)

6
.8

PLEDGE(2)
O

ne w
ay to reduce the ability of a com

prom
ised program

 to do Bad Things™
 is to

rem
ove access to unnecessary system

 calls

Several attem
pts in different system

s, w
ith varying (lim

ited) degrees of success:

H
ard to use correctly (e.g., Capsicum

), or
Introduce another com

ponent that needs to be w
atched (e.g., seccomp)

O
bservation:

M
ost program

s follow
 a pattern of initialization() then main_loop(),

and
The main_loop() typically uses a m

uch narrow
er class of system

 calls than
initialization()

Result? pledge(2) —
 ask the program

m
er to indicate explicitly w

hich classes of
system

 call they w
ish to use at any point, e.g., stdio, route, inet
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7

SUM
M

ARY
Protection

M
otivation, Requirem

ents, Subjects &
 O

bjects
D

esign of Protection System
s

Covert Channels
Low

-level M
echanism

s
IO

, M
em

ory, CPU
Authentication

U
ser to System

, System
 to U

ser
M

utual Suspicion
Access M

atrix
Access Control Lists (ACLs) vs Capabilities

O
S Structures

D
ual-m

ode O
peration, Kernels &

 M
icrokernels

M
andatory Access Control, pledge(2)
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1
.1

[03] PRO
CESSES

1
.2

OUTLINE
Process Concept

Relationship to a Program
W

hat is a Process?
Process Lifecycle

Creation
Term

ination
Blocking

Process M
anagem

ent
Process Control Blocks
Context Sw

itching
Threads

2
.1

PRO
CESS CO

NCEPTS
P

ro
c
e
s
s
 C

o
n

c
e
p

t

R
e
la

tio
n

s
h

ip
 to

 a
 P

ro
g

ra
m

W
h

a
t is

 a
 P

ro
c
e
s
s
?

Process Lifecycle
Process M

anagem
ent

2
.2

W
HAT IS A PROCESS?

The com
puter is there to execute program

s, not the operating system
!

Process 
 Program

A program
 is s

ta
tic, on-disk

A process is d
y
n

a
m

ic, a program
 in

 e
x
e
c
u
tio

n

O
n a batch system

, m
ight refer to jo

b
s instead of processes
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2
.3

W
HAT IS A PROCESS?

U
nit of protection and resource allocation

So you m
ay have m

ultiple copies of a process running
Each process executed on a v

irtu
a
l p

ro
c
e
s
s
o
r

H
as a virtual address space (later)

H
as one or m

ore threads, each of w
hich has

1. P
ro

g
ra

m
 C

o
u

n
te

r: w
hich instruction is executing

2. S
ta

c
k: tem

porary variables, param
eters, return addresses, etc.

3. D
a
ta

 S
e
c
tio

n: global variables shared am
ong threads

2
.4

PROCESS STATES

N
e
w

: being created
R

u
n

n
in

g: instructions are being executed
R

e
a
d

y: w
aiting for the CPU

, ready to run
B

lo
c
k
e
d: stopped, w

aiting for an event to occur
E
x
it: has finished execution

3
.1

PRO
CESS LIFECYCLE

Process Concept
P

ro
c
e
s
s
 L

ife
c
y
c
le

C
re

a
tio

n

T
e
rm

in
a
tio

n

B
lo

c
k
in

g

Process M
anagem

ent

3
.2

PROCESS CREATION

N
e
a
rly

 a
ll s

y
s
te

m
s
 a

re
 h

ie
ra

rc
h
ic

a
l: 

p
a
re

n
t p

ro
c
e
s
s
e
s
 c

re
a
te

 c
h
ild

 p
ro

c
e
s
s
e
s

Resource sharing:
Parent and children share all resources
Children share subset of parent's resources
Parent and child share no resources
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3
.3

PROCESS CREATION

N
e
a
rly

 a
ll s

y
s
te

m
s
 a

re
 h

ie
ra

rc
h
ic

a
l: 

p
a
re

n
t p

ro
c
e
s
s
e
s
 c

re
a
te

 c
h
ild

 p
ro

c
e
s
s
e
s

Resource sharing
Execution:

Parent and children execute concurrently
Parent w

aits until children term
inate

3
.4

PROCESS CREATION

N
e
a
rly

 a
ll s

y
s
te

m
s
 a

re
 h

ie
ra

rc
h
ic

a
l: 

p
a
re

n
t p

ro
c
e
s
s
e
s
 c

re
a
te

 c
h
ild

 p
ro

c
e
s
s
e
s

Resource sharing
Execution
Address space:

Child duplicate of parent
Child has a program

 loaded into it

3
.5

EXAM
PLES

U
n

ix:

fork() system
 call creates a child process, cloned from

 parent; then
execve() system

 call used to replace the process' m
em

ory space w
ith a new

program

N
T

/
2

K
/
X

P:

CreateProcess() system
 call includes nam

e of program
 to be executed

3
.6

PROCESS TERM
INATION

O
c
c
u
rs

 u
n
d
e
r th

re
e
 c

irc
u
m

s
ta

n
c
e
s

1. Process executes last statem
ent and asks the operating system

 to delete it (exit):
O

utput data from
 child to parent (w

ait)
Process' resources are deallocated by the O

S
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3
.7

PROCESS TERM
INATION

O
c
c
u
rs

 u
n
d
e
r th

re
e
 c

irc
u
m

s
ta

n
c
e
s

1. Process executes last statem
ent and asks the operating system

 to delete it
2. Process perform

s an illegal operation, e.g.,
M

akes an attem
pt to access m

em
ory to w

hich it is not authorised
Attem

pts to execute a privileged instruction

3
.8

PROCESS TERM
INATION

O
c
c
u
rs

 u
n
d
e
r th

re
e
 c

irc
u
m

s
ta

n
c
e
s

1. Process executes last statem
ent and asks the operating system

 to delete it
2. Process perform

s an illegal operation
3. Parent m

ay term
inate execution of child processes (abort, kill), e.g. because

Child has exceeded allocated resources
Task assigned to child is no longer required
Parent is exiting ("cascading term

ination")

3
.9

EXAM
PLES

U
nixwait(), exit() and kill()

N
T/2K/XP

ExitProcess() for self
TerminateProcess() for others.

3
.10

BLOCKING
In general a process blocks on an event, e.g.,

An IO
 device com

pletes an operation
Another process sends a m

essage
Assum

e O
S provides som

e kind of general-purpose blocking prim
itive, e.g.,

await()
N

eed care handling concurrency issues, e.g.,

W
hat happens if a key is pressed at the first {?

Com
plicated! N

ext year... Ignore for now
 :)

  if(no key being pressed) { 
    await(keypress); 
    print("Key has been pressed!\n"); 
  } 
  // handle keyboard input 
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3
.11

CPU IO BURST CYCLE
Process execution consists of a cycle of CPU

 execution and IO
 w

ait
Processes can be described as either:
1. IO

-b
o

u
n

d: spends m
ore tim

e doing IO
 that than com

putation; has m
any short

CPU
 bursts

2. C
P

U
-b

o
u

n
d: spends m

ore tim
e doing com

putations; has few
 very long CPU

bursts

3
.12

CPU IO BURST CYCLE

O
bserve that m

ost processes execute for at m
ost a few

 m
illiseconds before

blocking

W
e need m

ultiprogram
m

ing to obtain decent overall CPU
 utilisation

4
.1

PRO
CESS M

ANAGEM
ENT

Process Concept
Process Lifecycle
P

ro
c
e
s
s
 M

a
n

a
g

e
m

e
n

t

P
ro

c
e
s
s
 C

o
n

tro
l B

lo
c
k
s

C
o

n
te

x
t S

w
itc

h
in

g

T
h

re
a
d

s

4
.2

PROCESS CONTROL BLOCK

O
S m

aintains inform
ation about every process in a

data structure called a p
ro

c
e
s
s
 c

o
n
tro

l b
lo

c
k (PCB). The

P
ro

c
e
s
s
 C

o
n
te

x
t (highlighted) is the m

achine
environm

ent during the tim
e the process is actively

using the CPU
:

Program
 counter

General purpose registers
Processor status register
[ Caches, TLBs, Page tables, ... ]
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CONTEXT SW
ITCHING

To sw
itch betw

een processes, the O
S m

ust:
Save the context of the currently
executing process (if any), and
Restore the context of that being
resum

ed.
N

ote this is w
a
s
te

d
 tim

e —
 no useful w

ork is
carried out w

hile sw
itching

Tim
e taken depends on hardw

are support
From

 nothing, to
Save/load m

ultiple registers to/from
m

em
ory, to

Com
plete hardw

are "task sw
itch"

4
.3

4
.4

THREADS
A th

re
a
d represents an individual execution context

Threads are m
anaged by a s

c
h

e
d

u
le

r that determ
ines w

hich thread to run

Each thread has an associated T
h

re
a
d

 C
o

n
tro

l B
lo

c
k (TCB) w

ith m
etadata about the

thread: saved context (registers, including stack pointer), scheduler info, etc.

C
o

n
te

x
t s

w
itc

h
e
s occur w

hen the O
S saves the state of one thread and restores the

state of another. If betw
een threads in different processes, process state also

sw
itches

Threads visible to the O
S are k

e
rn

e
l th

re
a
d

s —
 m

ay execute in kernel or address
user space

5

SUM
M

ARY
Process Concept

Relationship to a program
W

hat is a process?
Process Lifecycle

Creation
Term

ination
Blocking

Process M
anagem

ent
Process Control Blocks
Context Sw

itching
Threads
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1
.1

[04] SCH
EDULING

1
.2

OUTLINE
Scheduling Concepts

Q
ueues

N
on-preem

ptive vs Preem
ptive

Idling
Scheduling Criteria

U
tilisation

Throughput
Turnaround, W

aiting, Response Tim
es

Scheduling Algorithm
s

First-Com
e First-Served

Shortest Job First
Shortest Response Tim

e First
Predicting Burst Length
Round Robin
Static vs D

ynam
ic Priority

2
.1

SCH
EDULING CO

NCEPTS
Scheduling Concepts

Q
ueues

Non-preem
ptive vs Preem

ptive
Idling

Scheduling Criteria
Scheduling Algorithm

s

2
.2

QUEUES

Job Q
ueue: batch processes aw

aiting adm
ission

Ready Q
ueue: processes in m

ain m
em

ory, ready and w
aiting to execute

W
ait Q

ueue(s): set of processes w
aiting for an IO

 device (or for other processes)
Job scheduler selects processes to put onto the ready queue
CPU scheduler selects process to execute next and allocates CPU
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2
.3

PREEM
PTIVE VS NON-PREEM

PTIVE

O
S
 n

e
e
d
s
 to

 s
e
le

c
t a

 re
a
d
y
 p

ro
c
e
s
s
 a

n
d
 a

llo
c
a
te

 it th
e
 C

P
U

 

W
h
e
n
?

...a running process blocks (running 
 blocked)

...a process term
inates (running 

 exit)

If scheduling decision is only taken under these conditions, the scheduler is said to
be non-preem

ptive

...a tim
er expires (running 

 ready)
...a w

aiting process unblocks (blocked 
 ready)

O
therw

ise it is preem
ptive

2
.4

NON-PREEM
PTIVE

Sim
ple to im

plem
ent:

N
o tim

ers, process gets the CPU
 for as long as desired

O
pen to d

e
n
ia

l-o
f-s

e
rv

ic
e:

M
alicious or buggy process can refuse to yield

Typically includes an e
x
p
lic

it yield system
 call or sim

ilar, plus im
p
lic

it yields, e.g.,
perform

ing IO
, w

aiting

Exam
ples: M

S-D
O

S, W
indow

s 3.11

2
.5

PREEM
PTIVE

Solves denial-of-service:
O

S can sim
ply preem

pt long-running process
M

ore com
plex to im

plem
ent:

Tim
er m

anagem
ent, concurrency issues

Exam
ples: Just about everything you can think of :)

2
.6

IDLING
W

e w
ill usually assum

e that there's alw
ays som

ething ready to run. But w
hat if

there isn't?

This is quite an im
portant question on m

odern m
achines w

here the com
m

on case is
>50%

 idle
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2
.7

IDLING

T
h
re

e
 o

p
tio

n
s

1. Busy w
ait in scheduler, e.g., W

indow
s 9x

Q
uick response tim

e
U

gly, useless

2
.8

IDLING

T
h
re

e
 o

p
tio

n
s

1. Busy w
ait in scheduler

2. H
alt processor until interrupt arrives, e.g., m

odern O
Ss

Saves pow
er (and reduces heat!)

Increases processor lifetim
e

M
ight take too long to stop and start

2
.9

IDLING

T
h
re

e
 o

p
tio

n
s

1. Busy w
ait in scheduler

2. H
alt processor until interrupt arrives

3. Invent an idle process, alw
ays available to run

Gives uniform
 structure

Could run housekeeping
U

ses som
e m

em
ory

M
ight slow

 interrupt response

In general there is a trade-off betw
een responsiveness and usefulness. Consider the

im
portant resources and the system

 com
plexity

3
.1

SCH
EDULING CRITERIA

Scheduling Concepts
Scheduling Criteria

Utilisation
Throughput
Turnaround, W

aiting, Response Tim
es

Scheduling Algorithm
s
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3
.2

SCHEDULING CRITERIA
Typically one expects to have m

ore than one option —
 m

ore than one process is
runnable

O
n w

hat basis should the CPU
 scheduler m

ake its decision?

M
any different m

etrics m
ay be used, exhibiting different trade-offs and leading to

different operating regim
es

3
.3

CPU UTILISATION

M
a
x
im

is
e
 th

e
 fra

c
tio

n
 o

f th
e
 tim

e
 th

e
 C

P
U

 is
 a

c
tiv

e
ly

 b
e
in

g

u
s
e
d

Keep the (expensive?) m
achine as busy as possible

But m
ay penalise processes that do a lot of IO

 as they appear to result in the CPU
not being used

3
.4

THROUGHPUT

M
a
x
im

is
e
 th

e
 n

u
m

b
e
r o

f th
a
t th

a
t c

o
m

p
le

te
 th

e
ir e

x
e
c
u
tio

n

p
e
r tim

e
 u

n
it

Get useful w
ork com

pleted at the highest rate possible

But m
ay penalise long-running processes as short-run processes w

ill com
plete

sooner and so are preferred

3
.5

TURNAROUND TIM
E

M
in

im
is

e
 th

e
 a

m
o
u
n
t o

f tim
e
 to

 e
x
e
c
u
te

 a
 p

a
rtic

u
la

r p
ro

c
e
s
s

Ensures every processes com
plete in shortest tim

e possible

W
AITING TIM

E

M
in

im
is

e
 th

e
 a

m
o
u
n
t o

f tim
e
 a

 p
ro

c
e
s
s
 h

a
s
 b

e
e
n
 w

a
itin

g
 in

th
e
 ready

 q
u
e
u
e

Ensures an interactive system
 rem

ains as responsive as possible

But m
ay penalise IO

 heavy processes that spend a long tim
e in the wait queue
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3
.6

RESPONSE TIM
E

M
in

im
is

e
 th

e
 a

m
o
u
n
t o

f tim
e
 it ta

k
e
s
 fro

m
 w

h
e
n
 a

 re
q
u
e
s
t

w
a
s
 s

u
b
m

itte
d
 u

n
til th

e
 firs

t re
s
p
o
n
s
e
 is

 p
ro

d
u
c
e
d

Found in tim
e-sharing system

s. Ensures system
 rem

ains as responsive to clients as
possible under load

But m
ay penalise longer running sessions under heavy load

4
.1

SCH
EDULING ALGO

RITH
M

S
Scheduling Concepts
Scheduling Criteria
Scheduling Algorithm

s
First-Com

e First-Served
Shortest Job First
Shortest Response Tim

e First
Predicting Burst Length
Round Robin
Static vs Dynam

ic Priority

4
.2

FIRST-COM
E FIRST-SERVED (FCFS)

Sim
plest possible scheduling algorithm

, depending only on the order in w
hich

processes arrive

E.g. given the follow
ing dem

and:Process
Burst Tim

e

4
.3

EXAM
PLE: FCFS

Consider the average w
aiting tim

e under different arrival orders

, 
, 

:

W
aiting tim

e 
, 

, 
Average w

aiting tim
e: 

, 
, 

:

W
aiting tim

e 
, 

, 
Average w

aiting tim
e: 

Arriving in reverse order is th
re

e
 tim

e
s
 a

s
 g

o
o
d!

The first case is poor due to the convoy effect: later processes are held up behind
a long-running first process
FCFS is sim

ple but not terribly robust to different arrival processes
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4
.4

SHORTEST JOB FIRST (SJF)
Intuition from

 FCFS leads us to s
h
o
rte

s
t jo

b
 firs

t (SJF) scheduling

Associate w
ith each process the length of its next CPU

 burst

U
se these lengths to schedule the process w

ith the shortest tim
e

U
se, e.g., FCFS to break ties

4
.5

EXAM
PLE: SJF

Process
Arrival Tim

e
Burst Tim

e

W
aiting tim

e for 
, 

, 
, 

. Average w
aiting tim

e: 

SJF is optim
al w

ith respect to average w
aiting tim

e:

It m
inim

ises average w
aiting tim

e for a given set of processes
W

hat m
ight go w

rong?

4
.6

SHORTEST REM
AINING-TIM

E FIRST (SRTF)
Sim

ply a preem
ptive version of SJF: preem

pt the running process if a new
 process

arrives w
ith a CPU

 burst length less than the rem
aining tim

e of the current
executing process

4
.7

EXAM
PLE: SRTF

As before:

Process
Arrival Tim

e
Burst Tim

e

W
aiting tim

e for 
, 

, 
, 

Average w
aiting tim

e: 
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4
.8

EXAM
PLE: SRTF

Surely this is optim
al in the face of new

 runnable processes arriving? N
ot

necessarily —
 w

hy?

Context sw
itches are not free: m

any very short burst length processes m
ay thrash

the CPU
, preventing useful w

ork being done

M
ore fundam

entally, w
e can't generally know

 w
hat the future burst length is!

4
.9

PREDICTING BURST LENGTHS
For both SJF and SRTF require the next "burst length" for each process m

eans w
e

m
ust estim

ate it

Can be done by using the length of previous CPU
 bursts, using exponential

averaging:

1. 
 = actual length of 

 CPU
 burst.

2. 
 = predicted value for next CPU

 burst.
3. For 

 define:

4
.10

PREDICTING BURST LENGTHS
If w

e expand the form
ula w

e get:

w
here 

 is som
e constant

Choose value of 
 according to our belief about the system

, e.g., if w
e believe

history irrelevant, choose 
 and then get 

In general an exponential averaging schem
e is a good predictor if the variance is

sm
all

Since both 
 and 

 are less than or equal to one, each successive term
 has

less w
eight than its predecessor

N
B. N

eed som
e consideration of load, else get (counter-intuitively) increased

priorities w
hen increased load

4
.11

ROUND ROBIN
A preem

ptive scheduling schem
e for tim

e-sharing system
s.

D
efine a sm

all fixed unit of tim
e called a quantum

 (or tim
e-slice), typically 10 —

100 m
illiseconds

Process at the front of the ready queue is allocated the CPU
 for (up to) one

quantum
W

hen the tim
e has elapsed, the process is preem

pted and appended to the ready
queue
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4
.12

ROUND ROBIN: PROPERTIES
Round robin has som

e nice properties:

Fair: given n processes in the ready queue and tim
e quantum

 q, each process gets
 of the CPU

Live: no process w
aits m

ore than 
 tim

e units before receiving a CPU
allocation
Typically get higher average turnaround tim

e than SRTF, but better average
response tim

e

But tricky to choose the correct size quantum
, 

:

 too large becom
es FCFS/FIFO

 too sm
all becom

es context sw
itch overhead too high

4
.13

PRIORITY SCHEDULING
Associate an (integer) priority w

ith each process, e.g.,

Prio
Process type

0
system

 internal processes

1
interactive processes (staff)

2
interactive processes (students)

3
batch processes

Sim
plest form

 m
ight be just system

 vs user tasks

4
.14

PRIORITY SCHEDULING
Then allocate CPU

 to the highest priority process: "highest priority" typically
m

eans sm
allest integer

Get preem
ptive and non-preem

ptive variants
E.g., SJF is a priority scheduling algorithm

 w
here priority is the predicted next

CPU
 burst tim

e

4
.15

TIE-BREAKING
W

hat do w
ith ties?

Round robin w
ith tim

e-slicing, allocating quantum
 to each process in turn

Problem
: biases tow

ards CPU
 intensive jobs (W

hy?)

Solution?
Per-process quantum

 based on usage?
Just ignore the problem

?
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4
.16

STARVATION
U

rb
a
n
 le

g
e
n
d
 a

b
o
u
t IB

M
 7

0
7
4
 a

t M
IT

: w
h
e
n
 s

h
u
t d

o
w

n
 in

 1
9
7
3
, lo

w
-p

rio
rity

 p
ro

c
e
s
s
e
s

w
e
re

 fo
u
n
d
 w

h
ic

h
 h

a
d
 b

e
e
n
 s

u
b
m

itte
d
 in

 1
9
6
7
 a

n
d
 h

a
d
 n

o
t y

e
t b

e
e
n
 ru

n
...

This is the biggest problem
 w

ith static priority system
s: a low

 priority process is not
guaranteed to run —

 ever!

4
.17

DYNAM
IC PRIORITY SCHEDULING

Prevent the starvation problem
: use sam

e scheduling algorithm
, but allow

 priorities
to change over tim

e

Processes have a (static) base priority and a dynam
ic effective priority

If process starved for 
 seconds, increm

ent effective priority
O

nce process runs, reset effective priority

4
.18

EXAM
PLE: COM

PUTED PRIORITY
First used in D

ijkstra's TH
E

Tim
eslots: 

In each tim
e slot 

, m
easure the CPU

 usage of process 
Priority for process  in slot 

:

E.g., 
Penalises CPU

 bound but supports IO
 bound

O
nce considered im

practical but now
 such com

putation considered acceptable

5

SUM
M

ARY
Scheduling Concepts

Q
ueues

N
on-preem

ptive vs Preem
ptive

Idling
Scheduling Criteria

U
tilisation

Throughput
Turnaround, W

aiting, Response Tim
es

Scheduling Algorithm
s

First-Com
e First-Served

Shortest Job First
Shortest Response Tim

e First
Predicting Burst Length
Round Robin
Static vs D

ynam
ic Priority
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[05] VIRTUAL ADDRESSING

1
.2
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M
EM

O
RY M

ANAGEM
ENT

M
e
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ry
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ts

R
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CONCEPTS
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 m

u
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ro
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m
m
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g
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y
s
te

m
, h

a
v
e
 m

a
n
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 p
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o
u
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s
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c
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n
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o
d
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x
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S
ta
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a
ta

 (in
 p

ro
g
ra
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D
y
n
a
m

ic
 d

a
ta

 (h
e
a
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 a

n
d
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c
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In
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d
d
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p
e
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tin
g
 s

y
s
te

m
 its

e
lf n

e
e
d
s
 m

e
m

o
ry

 fo
r in

s
tru

c
tio

n
s
 a

n
d
 d

a
ta

M
u
s
t s

h
a
re

 m
e
m

o
ry

 b
e
tw

e
e
n
 O

S
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n
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 p
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c
e
s
s
e
s
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2
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1. RELO
CATIO

N
M

e
m

o
ry

 ty
p
ic

a
lly

 s
h
a
re

d
 a

m
o
n
g
 p

ro
c
e
s
s
e
s
, s

o
 p

ro
g
ra

m
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e
r c
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o
w
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t p
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c
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 w
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M
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y
 w
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 s
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c
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c
h
e
s
, p

o
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O
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e
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CATIO
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c
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a
s
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3. PRO
TECTIO

N
P

ro
te

c
t o

n
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e
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m
 o

th
e
rs

M
a
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4. SH
ARING

M
u
ltip

le
 p

ro
c
e
s
s
e
s
 e

x
e
c
u
tin

g
 s

a
m

e
 b

in
a
ry

: k
e
e
p
 o

n
ly

 o
n
e
 c

o
p
y

S
h
ip

p
in

g
 d

a
ta

 a
ro

u
n
d
 b

e
tw

e
e
n
 p

ro
c
e
s
s
e
s
 b

y
 p

a
s
s
in

g
 s

h
a
re

d
 d

a
ta

 s
e
g
m

e
n
t

re
fe

re
n
c
e
s

O
p
e
ra

tin
g
 o

n
 s

a
m

e
 d

a
ta

 m
e
a
n
s
 s

h
a
rin

g
 lo

c
k
s
 w

ith
 o

th
e
r p

ro
c
e
s
s
e
s

2
.5

5. LO
GICAL O

RGANISATIO
N

M
o
s
t p

h
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s
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a
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e
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o
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c
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YSICAL O

RGANISATIO
N
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TH
E ADDRESS BINDING

PRO
BLEM

M
e
m

o
ry
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a
n
a
g
e
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e
n
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T
h

e
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3
.2

THE ADDRESS BINDING PROBLEM
C

o
n
s
id

e
r th

e
 fo

llo
w

in
g
 s

im
p
le

 p
ro

g
ra

m
:

int x, y; 
x = 5; 
y = x + 3; 

W
e
 c

a
n
 im

a
g
in

e
 th

a
t th

is
 w

o
u
ld

 re
s
u
lt in

 s
o
m

e
 a

s
s
e
m

b
ly

 c
o
d
e
 w

h
ic

h
 lo

o
k
s

s
o
m

e
th

in
g
 lik

e
:

str #5, [Rx]   ; store 5 into x 
ldr R1, [Rx]   ; load value of x from memory 
add R2, R1, #3 ; and add 3 to it 
str R2, [Ry]   ; and store result in y 

w
h
e
re

 th
e
 e

x
p
re

s
s
io

n
 [addr]

 m
e
a
n
s
 th

e
 c

o
n
te

n
ts
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e
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e
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o
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d
d
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s
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d
d
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T
h
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b
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h
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 d

o
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e
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n
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?

A
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e
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h
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w
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.g
. if lo

a
d
e
d
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t 0x1000
, th

e
n
 x
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n
d
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 m
ig

h
t b

e
 s
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d
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t 0x2000
,

0x2004
, b

u
t if lo

a
d
e
d
 a

t 0x5000
, th

e
n
 x
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n
d
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 m
ig

h
t b

e
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t 0x6000
, 0x6004
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ADDRESS BINDING AND RELOCATION
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LOGICAL VS PHYSICAL ADDRESSES
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4
.2

CONTIGUOUS ALLOCATION

H
o
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 d
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 c
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c
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 p
a
rtitio
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4
.3

STATIC M
ULTIPROGRAM

M
ING
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4
.4

DYNAM
IC PARTITIONING

M
o
re

 fle
x
ib

ility
 if a

llo
w

 p
a
rtitio
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4
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SCHEDULING EXAM
PLE
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4
.6

EXTERNAL FRAGM
ENTATION
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1
.1

[06] PAGING

1
.2

OUTLINE
Paged Virtual M

em
ory

Concepts
Pros and Cons
Page Tables
Translation Lookaside Buffer (TLB)
Protection &

 Sharing
Virtual M

em
ory

D
em

and Paging D
etails

Page Replacem
ent

Page Replacem
ent Algorithm

s
Perform

ance
Fram

e Allocation
Thrashing &

 W
orking Set

Pre-paging
Page Sizes

2
.1

PAGED VIRTUAL M
EM

O
RY

Paged Virtual M
em

ory
Concepts
Pros and Cons
Page Tables
Translation Lookaside Buffer (TLB)
Protection &

 Sharing
Virtual M

em
ory

Perform
ance

2
.2

PAGED VIRTUAL M
EM

ORY
Another solution is to allow

 a process to exist in non-contiguous m
em

ory, i.e.,

D
ivide physical m

em
ory into fram

es, sm
all fixed-size blocks

D
ivide logical m

em
ory into pages, blocks of the sam

e size (typically 4kB)
Each CPU

-generated address is a page num
ber 

 w
ith page offset 

Page table contains associated fram
e num

ber 
U

sually have 
 so also record w

hether m
apping valid
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2
.3

PAGING PROS AND CONS

H
ardw

are support required —
 frequently defines the page size, typically a pow

er
of 2 (m

aking address fiddling easy) ranging from
 512B to 8192B (0.5kB —

 8kB)
Logical address space of 

 and page size 
 gives 

 bits and 
bits
N

ote that paging is itself a form
 of dynam

ic relocation: sim
ply change page table

to reflect m
ovem

ent of page in m
em

ory. This is sim
ilar to using a set of base +

lim
it registers for each page in m

em
ory

2
.4

PAGING PROS AND CONS

M
em

ory allocation becom
es easier but O

S m
ust m

aintain a page table per
process

N
o external fragm

entation (in physical m
em

ory at least), but get internal
fragm

entation: a process m
ay not use all of final page

Indicates use of sm
all page sizes —

 but there's a significant per-page
overhead: the Page Table Entries (PTEs) them

selves, plus that disk IO
 is m

ore
efficient w

ith larger pages
Typically 2 —

 4kB now
adays (m

em
ory is cheaper)

2
.5

PAGING PROS AND CONS
Clear separation betw

een user (process) and system
 (O

S) view
 of m

em
ory usage

Process sees single logical address space; O
S does the hard w

ork
Process cannot address m

em
ory they don't ow

n —
 cannot reference a page it

doesn't have access to
O

S can m
ap system

 resources into user address space, e.g., IO
 buffer

O
S m

ust keep track of free m
em

ory; typically in fram
e table

Adds overhead to context sw
itching

Per process page table m
ust be m

apped into hardw
are on context sw

itch
The page table itself m

ay be large and extend into physical m
em

ory

2
.6

PAGE TABLES
Page Tables (PTs) rely on hardw

are support:

Sim
plest case: set of dedicated relocation registers
O

ne register per page, O
S loads registers on context sw

itch
E.g., PD

P-11 16 bit address, 8kB pages thus 8 PT registers
Each m

em
ory reference goes through these so they m

ust be fast
O

k for sm
all PTs but w

hat if w
e have m

any pages (typically 
)

Solution: Keep PT in m
em

ory, then just one M
M

U
 register needed, the Page

Table Base Register (PTBR)
O

S sw
itches this w

hen sw
itching process

Problem
: PTs m

ight still be very big
Keep a PT Length Register (PTLR) to indicate size of PT
O

r use a m
ore com

plex structure (see later)
Problem

: need to refer to m
em

ory tw
ice for every "actual" m

em
ory reference

Solution: use a Translation Lookaside Buffer (TLB)
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2
.7

TLB OPERATION
W

hen m
em

ory is referenced, present TLB w
ith logical m

em
ory address

If PTE is present, get an im
m

ediate result
O

therw
ise m

ake m
em

ory reference to PTs, and update the TLB
Latter case is typically 10%

 slow
er than direct m

em
ory reference

2
.8

TLB ISSUES
As w

ith any cache, w
hat to do w

hen it's full, how
 are entries shared?

If full, discard entries typically Least Recently U
sed (LRU

) policy
Context sw

itch requires TLB flush to prevent next process using w
rong PTEs —

M
itigate cost through process tags (how

?)

Perform
ance is m

easured in term
s of hit ratio, proportion of tim

e a PTE is found in
TLB. Exam

ple:

Assum
e TLB search tim

e of 20ns, m
em

ory access tim
e of 100ns, hit ratio of 80%

Assum
e one m

em
ory reference required for lookup, w

hat is the effective m
em

ory
access tim

e?
0.8 x 120 + 0.2 x 220 = 140 ns

N
ow

 increase hit ratio to 98%
 —

 w
hat is the new

 effective access tim
e?

0.98 x 120 + 0.02 x 220 = 122 ns —
 just a 13%

 im
provem

ent
(Intel 80486 had 32 registers and claim

ed a 98%
 hit ratio)

2
.9

M
ULTILEVEL PAGE TABLES

M
ost m

odern system
s can support very large 

, 
 address spaces, leading to very

large PTs w
hich w

e don't really w
ant to keep

all of in m
ain m

em
ory

Solution is to split the PT into several sub-
parts, e.g., tw

o, and then page the page table:

D
ivide the page num

ber into tw
o parts

e.g., 20 bit page num
ber, 12 bit page offset

Then divide the page num
ber into outer and inner parts of 10 bits each

2
.10

EXAM
PLE: VAX

A 32 bit architecture w
ith 512 byte pages:

Logical address space divided into 4 sections of 
 bytes

Top 2 address bits designate section
N

ext 21 bits designate page w
ithin section

Final 9 bits designate page offset
For a VAX w

ith 100 pages, one level PT w
ould be 4M

B; w
ith sectioning, it's 1M

B

For 64 bit architectures, tw
o-level paging is not enough: add further levels.

For 4kB pages need 
 entries in PT using 1 level PT

For 2 level PT w
ith 32 bit outer PT, w

e'd still need 16GB for the outer PT

Even som
e 32 bit m

achines have > 2 levels: SPARC (32 bit) has 3 level paging
schem

e; 68030 has 4 level paging
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2
.11

EXAM
PLE: X86

 

Page size is 4kB or 4M
B. First lookup to the page directory, indexed using top 10

bits. The page directory address is stored in an internal processor register (cr3).
The lookup results (usually) in the address of a page table. N

ext 10 bits index the
page table, retrieving the page fram

e address. Finally, add in the low
 12 bits as the

page offset. N
ote that the page directory and page tables are exactly one page each

them
selves (not by accident)

2
.12

PROTECTION ISSUES
Associate protection bits w

ith each page, kept in page tables (and TLB), e.g. one bit
for read, one for w

rite, one for execute (RWX). M
ight also distinguish w

hether m
ay

only be accessed w
hen executing in kernel m

ode, e.g.,

As the address goes through the page hardw
are, can check protection bits —

though note this only gives page granularity protection, not byte granularity

Any attem
pt to violate protection causes hardw

are trap to operating system
 code to

handle. The entry in the TLB w
ill have a valid/invalid bit indicating w

hether the
page is m

apped into the process address space. If invalid, trap to the O
S handler to

m
ap the page

Can do lots of interesting things here, particularly w
ith regard to sharing,

virtualization, ...

2
.13

SHARED PAGES
Another advantage of paged m

em
ory is code/data sharing, for exam

ple:

Binaries: editor, com
piler etc.

Libraries: shared objects, D
LLs

So how
 does this w

ork?

Im
plem

ented as tw
o logical addresses w

hich m
ap to one physical address

If code is re-entrant (i.e. stateless, non-self m
odifying) it can be easily shared

betw
een users

O
therw

ise can use copy-on-w
rite technique:

M
ark page as read-only in all processes

If a process tries to w
rite to page, w

ill trap to O
S fault handler

Can then allocate new
 fram

e, copy data, and create new
 page table m

apping
(M

ay use this for lazy data sharing too)

Requires additional book-keeping in O
S, but w

orth it, e.g., m
any hundreds of M

B
shared code on this laptop. (Though now

adays, see unikernels!)
3
.1

VIRTUAL M
EM

O
RY

Paged Virtual M
em

ory
Virtual M

em
ory

Dem
and Paging Details

Page Replacem
ent

Page Replacem
ent Algorithm

s
Perform

ance
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3
.2

VIRTUAL M
EM

ORY
Virtual addressing allow

s us to introduce the idea of virtual m
em

ory

Already have valid or invalid page translations; introduce "non-resident
designation and put such pages on a non-volatile backing store
Processes access non-resident m

em
ory just as if it w

ere "the real thing"

Virtual M
em

ory (VM
) has several benefits:

Portability: program
s w

ork regardless of how
 m

uch actual m
em

ory present;
program

s can be larger than physical m
em

ory
Convenience: program

m
er can use e.g. large sparse data structures w

ith
im

punity; less of the program
 needs to be in m

em
ory at once, thus potentially

m
ore efficient m

ulti-program
m

ing, less IO
 loading/sw

apping program
 into

m
em

ory
Efficiency: no need to w

aste (real) m
em

ory on code or data w
hich isn't used (e.g.,

error handling)

3
.3

VM
 IM

PLEM
ENTATION

Typically im
plem

ented via dem
and paging:

Program
s (executables) reside on disk

To execute a process w
e load pages in on dem

and; i.e. as and w
hen they are

referenced
Also get dem

and segm
entation, but rare (eg., Burroughs, O

S/2) as it's m
ore

difficult (segm
ent replacem

ent is m
uch harder due to segm

ents having variable
size)

3
.4

DEM
AND PAGING DETAILS

W
hen loading a new

 process for execution:

Create its address space (page tables, etc)
M

ark PTEs as either invalid or non-resident
Add PCB to scheduler

Then w
henever w

e receive a page fault, check PTE:

If due to invalid reference, kill process
O

therw
ise due to non-resident page, so "page in" the desired page:

Find a free fram
e in m

em
ory

Initiate disk IO
 to read in the desired page

W
hen IO

 is finished m
odify the PTE for this page to show

 that it is now
 valid

Restart the process at the faulting instruction

3
.5

DEM
AND PAGING: ISSUES

Above process m
akes the fault invisible to the process, but:

Requires care to save process state correctly on fault
Can be particularly aw

kw
ard on a CPU

 w
ith pipelined decode as w

e need to w
ind

back (e.g., M
IPS, Alpha)

Even w
orse on on CISC CPU

 w
here single instruction can m

ove lots of data,
possibly across pages —

 w
e can't restart the instruction so rely on help from

m
icrocode (e.g., to test address before w

riting). Can possibly use tem
porary

registers to store m
oved data

Sim
ilar difficulties from

 auto-increm
ent/auto-decrem

ent instructions, e.g., ARM
Can even have instructions and data spanning pages, so m

ultiple faults per
instruction; though locality of reference tends to m

ake this infrequent

Schem
e described above is pure dem

and paging: don't bring in pages until needed
so get lots of page faults and IO

 w
hen process begins; hence m

any real system
s

explicitly load som
e core parts of the process first
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3
.6

PAGE REPLACEM
ENT

To page in from
 disk, w

e need a free fram
e of physical m

em
ory to hold the data

w
e're reading in —

 but in reality, the size of physical m
em

ory is lim
ited so either:

D
iscard unused pages if total dem

and for pages exceeds physical m
em

ory size
O

r sw
ap out an entire process to free som

e fram
es

M
odified algorithm

: on a page fault w
e:

1. Locate the desired replacem
ent page on disk

2. Select a free fram
e for the incom

ing page:
1. If there is a free fram

e use it, otherw
ise select a victim

 page to free
2. Then w

rite the victim
 page back to disk

3. Finally m
ark it as invalid in its process page tables

3. Read desired page into the now
 free fram

e
4. Restart the faulting process

...thus, having no fram
es free effectively doubles the page fault service tim

e

3
.7

PAGE REPLACEM
ENT

Can reduce overhead by adding a "dirty" bit to PTEs

Can allow
 us to om

it step (2.2) above by only w
riting out page w

as m
odified, or if

page w
as read-only (e.g., code)

H
ow

 do w
e choose our victim

 page?

A key factor in an efficient VM
 system

: evicting a page that w
e'll need in a few

instructions tim
e can get us into a really bad condition

W
e w

ant to ensure that w
e get few

 page faults overall, and that any w
e do get

are relatively quick to satisfy

W
e w

ill now
 look at a few

 page replacem
ent algorithm

s:

All aim
 to m

inim
ise page fault rate

Candidate algorithm
s are evaluated by (trace driven) sim

ulation using reference
strings

3
.8

PAGE REPLACEM
ENT ALGORITHM

S
FIRST-IN FIRST-O

UT (FIFO
)

Keep a queue of pages, discard from
 head. Perform

ance is hard to predict as w
e've

no idea w
hether replaced page w

ill be used again or not: eviction is independent of
page use frequency. In general this is very sim

ple but pretty bad:

Can actually end up discarding a page currently in use, causing an im
m

ediate
fault and next in queue to be replaced —

 really slow
s system

 dow
n

Possible to have m
ore faults w

ith increasing num
ber of fram

es (Belady's
anom

aly)

O
PTIM

AL ALGO
RITH

M
 (O

PT)
Replace the page w

hich w
ill not be used again for longest period of tim

e. Can only
be done w

ith an oracle or in hindsight, but serves as a good baseline for other
algorithm

s

3
.9

LEAST RECENTLY USED (LRU)
Replace the page w

hich has not been used for the longest am
ount of tim

e.
Equivalent to O

PT w
ith tim

e running backw
ards. Assum

es that the past is a good
predictor of the future. Can still end up replacing pages that are about to be used

Generally considered quite a good replacem
ent algorithm

, though m
ay require

substantial hardw
are assistance

But! H
ow

 do w
e determ

ine the LRU
 ordering?
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3
.10

IM
PLEM

ENTING LRU: COUNTERS
Give each PTE a tim

e-of-use field and give the CPU
 a logical clock (counter)

W
henever a page is referenced, its PTE is updated to clock value

Replace page w
ith sm

allest tim
e value

Problem
s:

Requires a search to find m
inim

um
 counter value

Adds a w
rite to m

em
ory (PTE) on every m

em
ory reference

M
ust handle clock overflow

Im
practical on a standard processor

3
.11

IM
PLEM

ENTING LRU: PAGE STACK
M

aintain a stack of pages (doubly linked list) w
ith m

ost-recently used (M
RU

)
page on top
D

iscard from
 bottom

 of stack

Problem
:

Requires changing (up to) 6 pointers per [new
] reference (m

ax 6 pointers)
This is very slow

 w
ithout extensive hardw

are support

Also im
practical on a standard processor

3
.12

APPROXIM
ATING LRU

M
any system

s have a reference bit in the PTE, initially zeroed by O
S, and then set

by hardw
are w

henever the page is touched. After tim
e has passed, consider those

pages w
ith the bit set to be active and im

plem
ent Not Recently Used (N

RU
)

replacem
ent:

Periodically (e.g. 20m
s) clear all reference bits

W
hen choosing a victim

 to evict, prefer pages w
ith clear reference bits

If also have a m
odified or dirty bit in the PTE, can use that too

Referenced?
Dirty?

Com
m

ent

no
no

best type of page to replace

no
yes

next best (requires w
riteback)

yes
no

probably code in use

yes
yes

bad choice for replacem
ent

3
.13

IM
PROVING THE APPROXIM

ATION
Instead of just a single bit, the O

S:

M
aintains an 8-bit value per page, initialised to zero

Periodically (e.g. 20m
s) shifts reference bit onto high order bit of the byte, and

clear reference bit

Then select low
est value page (or one of) to replace

Keeps the history for the last 8 clock sw
eeps

Interpreting bytes as u_ints, then LRU
 page is m

in(additional_bits)
M

ay not be unique, but gives a candidate set
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3
.14

FURTHER IM
PROVM

ENT: SECOND-CHANCE FIFO

Store pages in queue as per FIFO
Before discarding head, check reference bit
If reference bit is 0, discard else reset reference bit, and give page a second
chance (add it to tail of queue)

Guaranteed to term
inate after at m

ost one cycle, w
ith the w

orst case having the
second chance devolve into a FIFO

 if all pages are referenced. A page given a
second chance is the last to be replaced

3
.15

IM
PLEM

ENTING SECOND-CHANCE FIFO
O

ften im
plem

ented w
ith a circular queue and a current pointer; in this case usually

called clock

If no hardw
are is provided, reference bit can em

ulate:

To clear "reference bit", m
ark page no access

If referenced then trap, update PTE, and resum
e

To check if referenced, check perm
issions

Can use sim
ilar schem

e to em
ulate m

odified bit

3
.16

OTHER REPLACEM
ENT SCHEM

ES
Counting Algorithm

s: keep a count of the num
ber of references to each page

Least Frequently Used (LFU
): replace page w

ith sm
allest count

Takes no tim
e inform

ation into account
Page can stick in m

em
ory from

 initialisation
N

eed to periodically decrem
ent counts

M
ost Frequently Used (M

FU
): replace highest count page

Low
 count indicates recently brought in

3
.17

PAGE BUFFERING ALGORITHM
S

Keep a m
inim

um
 num

ber of victim
s in a free pool

N
ew

 page read in before w
riting out victim

, allow
ing quicker restart of process

Alternative: if disk idle, w
rite m

odified pages out and reset dirty bit
Im

proves chance of replacing w
ithout having to w

rite dirty page

(Pseudo) M
RU

: Consider accessing e.g. large array.

The page to replace is one application has just finished w
ith, i.e. m

ost recently
used
Track page faults and look for sequences
D

iscard the 
th in victim

 sequence

Application-specific: stop trying to second-guess w
hat's going on and provide hook

for application to suggest replacem
ent, but m

ust be careful w
ith denial of service
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4
.1

PERFO
RM

ANCE
Paged Virtual M

em
ory

Virtual M
em

ory
Perform

ance
Fram

e Allocation
Thrashing &

 W
orking Set

Pre-paging
Page Sizes

4
.2

PERFORM
ANCE COM

PARISON
This plot show

s page-fault
rate against num

ber of
physical fram

es for a
pseudo-local reference
string (note offset x origin).
W

e w
ant to m

inim
ise area

under curve. FIFO
 could

exhibit Belady's Anom
aly

(but doesn't here). Can see
that getting fram

e
allocation right has m

ajor
im

pact —
 m

uch m
ore than

w
hich algorithm

 you use!

4
.3

FRAM
E ALLOCATION

A certain fraction of physical m
em

ory is reserved per-process and for core O
S code

and data. N
eed an allocation policy to determ

ine how
 to distribute the rem

aining
fram

es. O
bjectives:

Fairness (or proportional fairness)?
E.g. divide 

 fram
es betw

een 
 processes as 

, rem
ainder in free pool

E.g. divide fram
es in proportion to size of process (i.e. num

ber of pages used)
M

inim
ize system

-w
ide page-fault rate?

E.g. allocate all m
em

ory to few
 processes

M
axim

ize level of m
ultiprogram

m
ing?

E.g. allocate m
in m

em
ory to m

any processes

Could also allocate taking process priorities into account, since high-priority
processes are supposed to run m

ore readily. Could even care w
hich fram

es w
e give

to w
hich process ("page colouring")

4
.4

FRAM
E ALLOCATION: GLOBAL SCHEM

ES
M

ost page replacem
ent schem

es are global: all pages considered for replacem
ent

Allocation policy im
plicitly enforced during page-in

Allocation succeeds iff policy agrees
Free fram

es often in use so steal them
!

For exam
ple, on a system

 w
ith 64 fram

es and 5 processes:

If using fair share, each processes w
ill have 12 fram

es, w
ith four left over (m

aybe)
W

hen a process dies, w
hen the next faults it w

ill succeed in allocating a fram
e

Eventually all w
ill be allocated

If a new
 process arrives, need to steal som

e pages back from
 the existing

allocations
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4
.5

FRAM
E ALLOCATION: COM

PARISON TO LOCAL
Also get local page replacem

ent schem
es: victim

 alw
ays chosen from

 w
ithin

process

In global schem
es the process cannot control its ow

n page fault rate, so
perform

ance m
ay depend entirely on w

hat other processes page in/out

In local schem
es, perform

ance depends only on process behaviour, but this can
hinder progress by not m

aking available less/unused pages of m
em

ory

Global are optim
al for throughput and are the m

ost com
m

on

4
.6

THE RISK OF T
H

R
A
S
H

IN
G

M
ore processes entering the system

causes the fram
es-per-process allocated

to reduce. Eventually w
e hit a w

all:
processes end up stealing fram

es from
each other, but then need them

 back so
fault. U

ltim
ately the num

ber of runnable
processes plunges

A process can technically run w
ith

m
inim

um
-free fram

es available but w
ill

have a very high page fault rate. If w
e're

very unlucky, O
S m

onitors CPU
 utilisation and increases level of m

ultiprogram
m

ing
if utilisation is too low

: m
achine dies

Avoid thrashing by giving processes as m
any fram

es as they "need" and, if w
e can't,

w
e m

ust reduce the M
PL —

 a better page-replacem
ent algorithm

 w
ill not help

4
.7

LOCALITY OF REFERENCE

In a short tim
e interval, the locations referenced by a process tend to be grouped

into a few
 regions in its address space:

Procedure being executed
Sub-procedures
D

ata access
Stack variables

4
.8

AVOIDING THRASHING
W

e can use the locality of reference principle to help determ
ine how

 m
any fram

es a
process needs:

D
efine the W

orking Set (W
S) (D

enning, 1967)

Set of pages that a process needs in store at "the sam
e tim

e" to m
ake any progress

Varies betw
een processes and during execution

Assum
e process m

oves through phases
In each phase, get (spatial) locality of reference
From

 tim
e to tim

e get phase shift
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4
.9

CALCULATING W
ORKING SET

Then O
S can try to prevent thrashing by m

aintaining sufficient pages for current
phase:

Sam
ple page reference bits every, e.g., 10m

s
D

efine w
indow

 size 
 of m

ost recent page references
If a page is "in use", say it's in the w

orking set
Gives an approxim

ation to locality of program
Given the size of the w

orking set for each process 
, sum

 w
orking set sizes

to get total dem
and 

If 
 w

e are in danger of thrashing —
 suspend a process

This optim
ises CPU

 util but has the need to com
pute 

 (m
oving w

indow
 across

stream
). Can approxim

ate w
ith periodic tim

er and som
e page reference script. After

som
e num

ber of intervals (i.e., of bits of state) consider pages w
ith count < 0 to be

in W
S. In general, a w

orking set can be used as a schem
e to determ

ine allocation
for each process

4
.10

PRE-PAGING

Pure dem
and paging causes a large num

ber of PF w
hen process starts

Can rem
em

ber the W
S for a process and pre-page the required fram

es w
hen

process is resum
ed (e.g. after suspension)

W
hen process is started can pre-page by adding its fram

es to free list

Increases IO
 cost: H

ow
 do w

e select a page size (given no hardw
are constraints)?

4
.11

PAGE SIZES

Trade-off the size of the PT and the degree of fragm
entation as a result

Typical values are 512B to 16kB —
 but should be reduce the num

bers of queries,
or ensure that the w

indow
 is covered

Larger page size m
eans few

er page faults

H
istorical trend tow

ards larger page sizes
Eg., 386: 4kB, 68030: 256B to 32kB

So, a page of 1kB, 56m
s for 2 pages of 512B but sm

aller page allow
s us to w

atch
locality m

ore accurately. Page faults rem
ain costly because CPU

 and m
em

ory m
uch

m
uch faster than disk

5

SUM
M

ARY
Paged Virtual M

em
ory

Concepts
Pros and Cons
Page Tables
Translation Lookaside Buffer (TLB)
Protection &

 Sharing
Virtual M

em
ory

D
em

and Paging D
etails

Page Replacem
ent

Page Replacem
ent Algorithm

s
Perform

ance
Fram

e Allocation
Thrashing &

 W
orking Set

Pre-paging
Page Sizes
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1
.1

[07] SEGM
ENTATIO

N

1
.2

OUTLINE
Segm

entation
An Alternative to Paging

Im
plem

enting Segm
ents

Segm
ent Table

Lookup Algorithm
Protection and Sharing

Sharing Subtleties
External Fragm

entation
Segm

entation vs Paging
Com

parison
Com

bination
Sum

m
ary

Extras
D

ynam
ic Linking &

 Loading

2
.1

SEGM
ENTATIO

N
Segm

entation
An Alternative to Paging

Im
plem

enting Segm
ents

Protection and Sharing
Segm

entation vs Paging
Sum

m
ary

Extras

2
.2

AN ALTERNATIVE TO PAGING
View

 m
em

ory as a set of
segm

ents of no particular size,
w

ith no particular ordering

This corresponds to typical
m

odular approaches taken to
program

 developm
ent

The length of a segm
ent

depends on the com
plexity of

the function (e.g., sqrt)
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2
.3

W
HAT IS A SEGM

ENT?
Segm

entation supports the user-view
 of m

em
ory that the logical address space

becom
es a collection of (typically disjoint) segm

ents

Segm
ents have a nam

e (or a num
ber) and a length. Addresses specify segm

ent, and
offset w

ithin segm
ent

To access m
em

ory, user program
 specifies segm

ent + offset, and the com
piler (or, as

in M
U

LTICS, the O
S) translates, in contrast to paging w

here the user is unaw
are of

the m
em

ory structure and everything is m
anaged invisibly

W
ith paging, the user is unaw

are of m
em

ory structure —
 everything is m

anaged
invisibly

3
.1

IM
PLEM

ENTING SEGM
ENTS

Segm
entation

Im
plem

enting Segm
ents

Segm
ent Table

Lookup Algorithm
Protection and Sharing
Segm

entation vs Paging
Sum

m
ary

Extras

3
.2

IM
PLEM

ENTING SEGM
ENTS

Logical addresses are pairs, (segment, offset)

For exam
ple, the com

piler m
ight construct distinct segm

ents for global variables,
procedure call stack, code for each procedure/function, local variables for each
procedure/function

Finally the loader takes each segm
ent and m

aps it to a physical segm
ent num

ber

3
.3

IM
PLEM

ENTING SEGM
ENTS

Segm
ent

Access
Base

Size
O

thers!

  

M
aintain a Segm

ent Table for each process:

If there are too m
any segm

ents then the table is kept in m
em

ory, pointed to by
ST Base Register (STBR)
Also have an ST Length Register (STLR) since the num

ber of segm
ents used by

diferent program
s w

ill diverge w
idely

ST is part of the process context and hence is changed on each process sw
itch

ST logically accessed on each m
em

ory reference, so speed is critical
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3
.4

IM
PLEM

ENTING SEGM
ENTS: ALGORITHM

1. Program
 presents address 

.
2. If 

 STLR then give up
3. O

btain table entry at reference 
+STBR, a tuple of form

 
4. If 

 then this is a valid address at location 
, else fault

The tw
o operations 

 and 
 can be done sim

ultaneously to save
tim

e
Still requires 2 m

em
ory references per lookup though, so care needed

E.g., U
se a set of associative registers to hold m

ost recently used ST entries
Sim

ilar perform
ance gains to the TLB description earlier

4
.1

PRO
TECTIO

N AND SH
ARING

Segm
entation

Im
plem

enting Segm
ents

Protection and Sharing
Sharing Subtleties
External Fragm

entation
Segm

entation vs Paging
Sum

m
ary

Extras

4
.2

PROTECTION
Segm

entation's big advantage is to provide protection betw
een com

ponents

That protection is provided per segm
ent; i.e. it corresponds to the logical view

Protection bits associated w
ith each ST entry checked in usual w

ay, e.g., instruction
segm

ents should not be self-m
odifying, so are protected against w

rites

Could go further —
 e.g., place every array in its ow

n segm
ent so that array lim

its
can be checked by the hardw

are

4
.3

SHARING
Segm

entation also facilitates sharing of code/data:

Each process has its ow
n STBR/STLR

Sharing is enabled w
hen tw

o processes have entries for the sam
e physical

locations
Sharing occurs at segm

ent level, w
ith each segm

ent having ow
n protection bits

For data segm
ents can use copy-on-w

rite as per paged case
Can share only parts of program

s, e.g., C library but there are subtleties
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4
.4

SHARING: SUBTLETIES
For exam

ple, jum
ps w

ithin shared code
Jum

p specified as a condition + transfer address, i.e., (segment, offset)
Segm

ent is (of course) this one
Thus all program

s sharing this segm
ent m

ust use the sam
e num

ber to refer to
it, else confusion w

ill result
As the num

ber of users sharing a segm
ent grow

s, so does difficulty of finding
a com

m
on shared segm

ent num
ber

Thus, specify branches as PC-relative or relative to a register containing the
current segm

ent num
ber

(Read only segm
ents containing no pointers m

ay be shared w
ith different seg

num
bers)

4
.5

SHARING SEGM
ENTS

W
asteful (and dangerous) to store com

m
on inform

ation on shared segm
ent in

each process segm
ent table

Assign each segm
ent a unique System

 Segm
ent Num

ber (SSN
)

Process Segm
ent Table sim

ply m
aps from

 a Process Segm
ent Num

ber (PSN
) to

SSN

4
.6

EXTERNAL FRAGM
ENTATION RETURNS

Long term
 scheduler m

ust find spots in m
em

ory for all segm
ents of a program

.
Problem

 is that segm
ents are variable size —

 thus, w
e m

ust handle fragm
entation

1. U
sually resolved w

ith best/first fit algorithm
2. External frag m

ay cause process to have to w
ait for sufficient space

3. Com
paction can be used in cases w

here a process w
ould be delayed

Tradeoff betw
een com

paction/delay depends on average segm
ent size

Each process has just one segm
ent reduces to variable sized partitions

Each byte has its ow
n segm

ent separately relocated quadruples m
em

ory use!
Fixed size sm

all segm
ents is equivalent to paging!

Generally, w
ith sm

all average segm
ent sizes, external fragm

entation is sm
all —

m
ore likely to m

ake things fit w
ith lots of sm

all ones (box packing)

5
.1

SEGM
ENTATIO

N VS PAGING
Segm

entation
Im

plem
enting Segm

ents
Protection and Sharing
Segm

entation vs Paging
Com

parison
Com

bination
Sum

m
ary

Extras
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5
.2

SEGM
ENTATION VERSUS PAGING

Protection, Sharing, D
em

and etc are all per segm
ent or page, depending on

schem
e

For protection and sharing, easier to have it per logical entity, i.e., per segm
ent

For allocation and dem
and access (and, in fact, certain types of sharing such as

CO
W

), w
e prefer paging because:

Allocation is easier
Cost of sharing/dem

and loading is m
inim

ised

logical view
allocation

segm
entation

good
bad

paging
bad

good

5
.3

COM
BINING SEGM

ENTATION AND PAGING
1. Paged segm

ents, used in M
ultics, O

S/2
D

ivide each segm
ent 

 into 
 pages, w

here 
 is the lim

it (length)
of the segm

ent
Provision one page table per segm

ent
U

nfortunately: high hardw
are cost and com

plexity; not very portable
2. Softw

are segm
ents, used in m

ost m
odern O

Ss
Consider pages 

 to be a segm
ent

O
S m

ust ensure protection and sharing kept consistent over region
U

nfortunately, leads to a loss of granularity
H

ow
ever, it is relatively sim

ple and portable

Arguably, m
ain reason hardw

are segm
ents lost is portability: you can do softw

are
segm

ents w
ith just paging hardw

are, but cannot (easily) do softw
are paging w

ith
segm

entation hardw
are

6
.1

SUM
M

ARY
Segm

entation
Im

plem
enting Segm

ents
Protection and Sharing
Segm

entation vs Paging
Sum

m
ary

Extras

6
.2

SUM
M

ARY: VIRTUAL ADDRESSING
D

irect access to physical m
em

ory is not great as have to handle:
Contiguous allocation: need a large lum

p, end up w
ith external fragm

entation
Address binding: handling absolute addressing
Portability: how

 m
uch m

em
ory does a "standard" m

achine have?
Avoid problem

s by separating concepts of virtual (logical) and physical addresses
(Atlas com

puter, 1962)
N

eedham
's com

m
ent "every problem

 in com
puter science can be solved by an extra

level of indirection"
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6
.3

SUM
M

ARY: VIRTUAL TO PHYSICAL ADDRESS M
APPING

Runtim
e m

apping of logical to physical addresses handled by the M
M

U
. M

ake
m

apping per-process, then:
Allocation problem

 split:
Virtual address allocation easy
Allocate physical m

em
ory 'behind the scenes'

Address binding solved:
Bind to logical addresses at com

pile-tim
e

Bind to real addresses at load tim
e/run tim

e
M

odern operating system
s use paging hardw

are and fake out segm
ents in

softw
are

6
.4

SUM
M

ARY: IM
PLEM

ENTATION CONSIDERATIONS
Hardw

are support
Sim

ple base reg enough for partitioning
Segm

entation and paging need large tables
Perform

ance
Com

plex algorithm
s need m

ore lookups per reference plus hardw
are support

Sim
ple schem

es preferred eg., sim
ple addition to base

Fragm
entation: internal/external from

 fixed/variable size allocation units
Relocation: solves external fragm

entation, at high cost
Logical addresses m

ust be com
puted dynam

ically, doesn't w
ork w

ith load
tim

e relocation
Sw

apping: can be added to any algorithm
, allow

ing m
ore processes to access

m
ain m

em
ory

Sharing: increases m
ultiprogram

m
ing but requires paging or segm

entation
Protection: alw

ays useful, necessary to share code/data, needs a couple of bits

7
.1

EXTRAS
Segm

entation
Im

plem
enting Segm

ents
Protection and Sharing
Segm

entation vs Paging
Sum

m
ary

Extras
Dynam

ic Linking &
 Loading

7
.2

DYNAM
IC LINKING

Relatively new
 appearance in O

S (early 80's). U
ses shared objects/libraries (U

nix), or
dynam

ically linked libraries (D
LLs; W

indow
s). Enables a com

piled binary to invoke, at
runtim

e, routines w
hich are dynam

ically linked:

If a routine is invoked w
hich is part of the dynam

ically linked code, this w
ill be

im
plem

ented as a call into a set of stubs
Stubs check if routine has been loaded
If not, linker loads routine (if necessary) and replaces stub code by routing
If sharing a library, the address binding problem

 m
ust also be solved, requiring

O
S support: in the system

, only the O
S know

s w
hich libraries are being shared

am
ong w

hich processes
Shared libs m

ust be stateless or concurrency safe or copy on w
rite

Results in sm
aller binaries (on-disk and in-m

em
ory) and increase flexibility (fix a

bug w
ithout relinking all binaries)
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7
.3

DYNAM
IC LOADING

At runtim
e a routine is loaded w

hen first invoked
The dynam

ic loader perform
s relocation on the fly

It is the responsibility of the user to im
plem

ent loading
O

S m
ay provide library support to assist user

8

SUM
M

ARY
Segm

entation
An Alternative to Paging

Im
plem

enting Segm
ents

Segm
ent Table

Lookup Algorithm
Protection and Sharing

Sharing Subtleties
External Fragm

entation
Segm

entation vs Paging
Com

parison
Com

bination
Sum

m
ary

Extras
D

ynam
ic Linking &

 Loading
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1
.1

[08] IO
 SUBSYSTEM

1
.2

OUTLINE
Input/O

utput (IO
)

H
ardw

are
D

evice Classes
O

S Interfaces
Perform

ing IO
Polled M

ode
Interrupt D

riven
Blocking vs N

on-blocking
H

andling IO
Buffering &

 Strategies
O

ther Issues
Kernel D

ata Structures
Perform

ance

2
.1

INPUT/O
UTPUT

Input/O
utput (IO

)
Hardw

are
Device Classes
O

S Interfaces
Perform

ing IO
H

andling IO

2
.2

IO HARDW
ARE

Very w
ide range of devices that interact w

ith the com
puter via input/output (IO

):

H
um

an readable: graphical displays, keyboard, m
ouse, printers

M
achine readable: disks, tapes, CD

, sensors
Com

m
unications: m

odem
s, netw

ork interfaces, radios

All differ significantly from
 one another w

ith regard to:

Data rate: orders of m
agnitude different betw

een keyboard and netw
ork

Control com
plexity: printers m

uch sim
pler than disks

Transfer unit and direction: blocks vs characters vs fram
e stores

Data representation
Error handling
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2
.3

IO SUBSYSTEM
Results in IO

 subsystem
 generally being the "m

essiest" part of the O
S

So m
uch variety of devices

So m
any applications

So m
any dim

ensions of variation:
Character-stream

 or block
Sequential or random

-access
Synchronous or asynchronous
Shareable or dedicated
Speed of operation
Read-w

rite, read-only, or w
rite-only

Thus, com
pletely hom

ogenising device API is not possible so O
S generally splits

devices into four classes

2
.4

DEVICE CLASSES
Block devices (e.g. disk drives, CD

)

Com
m

ands include read, write, seek
Can have raw

 access or via (e.g.) filesystem
 ("cooked") or m

em
ory-m

apped

Character devices (e.g. keyboards, m
ice, serial):

Com
m

ands include get, put
Layer libraries on top for line editing, etc

Netw
ork Devices

Vary enough from
 block and character devices to get their ow

n interface
U

nix and W
indow

s N
T use the Berkeley Socket interface

M
iscellaneous

Current tim
e, elapsed tim

e, tim
ers, clocks

(U
nix) ioctl covers other odd aspects of IO

2
.5

OS INTERFACES
Program

s access virtual devices:
Term

inal stream
s not term

inals,
w

indow
s not fram

e buffer, event
stream

s not raw
 m

ouse, files not disk
blocks, print spooler not parallel port,
transport protocols not raw

 Ethernet
fram

es

O
S handles the processor-device interface: IO

 instructions vs m
em

ory m
apped

devices; IO
 hardw

are type (e.g. 10s of serial chips); Polled vs interrupt driven; CPU
interrupt m

echanism

Virtual devices then im
plem

ented:

In kernel, e.g. files, term
inal devices

In daem
ons, e.g. spooler, w

indow
ing

In libraries, e.g. term
inal screen control, sockets

3
.1

PERFO
RM

ING IO
Input/O

utput (IO
)

Perform
ing IO

Polled M
ode

Interrupt Driven
Blocking vs Non-blocking

H
andling IO

D
rRichard

M
ortier

IA
O
perating

System
s,2015/16

58/93



3
.2

POLLED M
ODE

Consider a sim
ple device w

ith three registers:
status, data and command. H

ost can read
and w

rite these via bus. Then polled m
ode

operation w
orks as follow

s:

H
 repeatedly reads device-busy until clear

H
 sets e.g. write bit in com

m
and register, and puts data into data register

H
 sets command-ready bit in status register

D
 sees command-ready and sets device-busy

D
 perform

s w
rite operation

D
 clears command-ready &

 then clears device-busy

W
hat's the problem

 here?

3
.3

INTERRUPT DRIVEN
Rather than polling, processors provide an interrupt m

echanism
 to handle

m
ism

atch betw
een CPU

 and device speeds:

At end of each instruction, processor checks interrupt line(s) for pending interrupt
N

eed not be precise (that is, occur at definite point in instruction stream
)

If line is asserted then processor:
Saves program

 counter &
 processor status

Changes processor m
ode

Jum
ps to a w

ell-know
n address (or contents of a w

ell-know
n address)

O
nce interrupt-handling routine finishes, can use e.g. rti instruction to resum

e
M

ore com
plex processors m

ay provide:
M

ultiple priority levels of interrupt
Hardw

are vectoring of interrupts
M

ode dependent registers

3
.4

HANDLING INTERRUPTS
Split the im

plem
entation into tw

o parts:

At the bottom
, the interrupt handler

At the top, 
 interrupt service routines (ISR; per-device)

Processor-dependent interrupt handler m
ay:

Save m
ore registers and establish a language environm

ent
D

em
ultiplex interrupt in softw

are and invoke relevant ISR

D
evice- (not processor-) dependent interrupt service routine w

ill:

For program
m

ed IO
 device: transfer data and clear interrupt

For D
M

A devices: acknow
ledge transfer; request any m

ore pending; signal any
w

aiting processes; and finally enter the scheduler or return

Q
uestion: W

ho is scheduling w
hom

?

Consider, e.g., netw
ork livelock

3
.5

BLOCKING VS NON-BLOCKING
From

 program
m

er's point of view
, IO

 system
 calls exhibit one of three kinds of

behaviour:

Blocking: process suspended until IO
 com

pleted
Easy to use and understand.
Insufficient for som

e needs.
Nonblocking: IO

 call returns as m
uch as available

Returns alm
ost im

m
ediately w

ith count of bytes read or w
ritten (possibly 0)

Can be used by e.g. user interface code
Essentially application-level "polled IO

"
Asynchronous: process runs w

hile IO
 executes

IO
 subsystem

 explicitly signals process w
hen its IO

 request has com
pleted

M
ost flexible (and potentially efficient)

Also m
ost com

plex to use
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4
.1

H
ANDLING IO

Input/O
utput (IO

)
Perform

ing IO
Handling IO

Buffering &
 Strategies

O
ther Issues

Kernel Data Structures
Perform

ance

4
.2

IO BUFFERING
To cope w

ith various im
pedance m

ism
atches betw

een devices (speed, transfer size),
O

S m
ay buffer data in m

em
ory. Various buffering strategies:

Single buffering: O
S assigns a system

 buffer to the user request
Double buffering: process consum

es from
 one buffer w

hile system
 fills the next

Circular buffering: m
ost useful for bursty IO

Buffering is useful for sm
oothing peaks and troughs of data rate, but can't help if on

average:

Process dem
and > data rate (process w

ill spend tim
e w

aiting), or
D

ata rate > capability of the system
 (buffers w

ill fill and data w
ill spill)

D
ow

nside: can introduce jitter w
hich is bad for real-tim

e or m
ultim

edia

D
etails often dictated by device type: character devices often by line; netw

ork
devices particularly bursty in tim

e and space; block devices m
ake lots of fixed size

transfers and often the m
ajor user of IO

 buffer m
em

ory

4
.3

SINGLE BUFFERING
O

S assigns a single buffer to the user request:

O
S perform

s transfer, m
oving buffer to userspace w

hen com
plete (rem

ap or copy)
Request new

 buffer for m
ore IO

, then reschedule application to consum
e

(readahead or anticipated input)
O

S m
ust track buffers

Also affects sw
ap logic: if IO

 is to sam
e disk as sw

ap device, doesn't m
ake sense

to sw
ap process out as it w

ill be behind the now
 queued IO

 request!

A crude perform
ance com

parison betw
een no buffering and single buffering:

Let t be tim
e to input block and c be com

putation tim
e betw

een blocks
W

ithout buffering, execution tim
e betw

een blocks is 
W

ith single buffering, tim
e is 

 w
here 

 is the tim
e to m

ove data
from

 buffer to user m
em

ory
For a term

inal: is the buffer a line or a char? depends on user response required

4
.4

DOUBLE BUFFERING
O

ften used in video rendering
Rough perform

ance com
parison: takes 

 thus
possible to keep device at full speed if 
w

hile if 
, process w

ill not have to w
ait for IO

Prevents need to suspend user process betw
een IO

 operations
...also explains w

hy tw
o buffers is better than one buffer, tw

ice as big
N

eed to m
anage buffers and processes to ensure process doesn't start consum

ing
from

 an only partially filled buffer

 CIRCULAR BUFFERING
Allow

s consum
ption from

 the buffer at a fixed rate, potentially low
er than the

burst rate of arriving data
Typically use circular linked list w

hich is equivalent to a FIFO
 buffer w

ith queue
length
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4
.5

OTHER ISSUES
Caching: fast m

em
ory holding copy of data for both reads and w

rites; critical to
IO

 perform
ance

Scheduling: order IO
 requests in per-device queues; som

e O
Ss m

ay even attem
pt

to be fair
Spooling: queue output for a device, useful if device is "single user" (e.g., printer),
i.e. can serve only one request at a tim

e
Device reservation: system

 calls for acquiring or releasing exclusive access to a
device (care required)
Error handling: generally get som

e form
 of error num

ber or code w
hen request

fails, logged into system
 error log (e.g., transient w

rite failed, disk full, device
unavailable, ...)

4
.6

KERNEL DATA STRUCTURES
To m

anage all this, the O
S kernel m

ust m
aintain state for IO

 com
ponents:

O
pen file tables

N
etw

ork connections
Character device states

Results in m
any com

plex and perform
ance criticial data structures to track buffers,

m
em

ory allocation, "dirty" blocks

Consider reading a file from
 disk for a process:

D
eterm

ine device holding file
Translate nam

e to device representation
Physically read data from

 disk into buffer
M

ake data available to requesting process
Return control to process

4
.7

PERFORM
ANCE

IO
 a m

ajor factor in system
 perform

ance

D
em

ands CPU
 to execute device driver, kernel IO

 code, etc.
Context sw

itches due to interrupts
D

ata copying

Im
proving perform

ance:

Reduce num
ber of context sw

itches
Reduce data copying
Reduce num

ber of interrupts by using large transfers, sm
art controllers, polling

U
se D

M
A w

here possible
Balance CPU

, m
em

ory, bus and IO
 perform

ance for highest throughput.

Im
proving IO

 perform
ance rem

ains a significant challenge...

5

SUM
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utput (IO
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ardw
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O
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1
.1

[09] STO
RAGE

1
.2

OUTLINE
File Concepts

Filesystem
s

N
am

ing Files
File M

etadata
D

irectories
N

am
e Space Requirem

ents
Structure
Im

plem
entation

FilesO
perations

Im
plem

entation
Access Control, Existence Control, Concurrency Control

2
.1

FILE CO
NCEPTS

File Concepts
Filesystem

s
Nam

ing Files
File M

etadata
D

irectories
Files

2
.2

FILESYSTEM
W

e w
ill look only at very sim

ple
filesystem

s here, having tw
o

m
ain com

ponents:

1. Directory Service, m
apping nam

es to file identifiers, and handling access and
existence control

2. Storage Service, providing m
echanism

 to store data on disk, and including m
eans

to im
plem

ent directory service
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2
.3

W
HAT IS A FILE?

The basic abstraction for non-volatile storage:

U
ser abstraction —

 com
pare/contrast w

ith segm
ents for m

em
ory

M
any different types:

D
ata: num

eric, character, binary
Program

: source, object, executable
"D

ocum
ents"

Typically com
prises a single contiguous logical address space

Can have varied internal structure:

N
one: a sim

ple sequence of w
ords or bytes

Sim
ple record structures: lines, fixed length, variable length

Com
plex internal structure: form

atted docum
ent, relocatable object file

2
.4

W
HAT IS A FILE?

O
S split betw

een text and binary is quite com
m

on w
here text files are treated as

A sequence of lines each term
inated by a special character, and

W
ith an explicit EO

F character (often)

Can m
ap everything to a byte sequence by inserting appropriate control characters,

and interpretation in code. Q
uestion is, w

ho decides:

O
S: m

ay be easier for program
m

er but w
ill lack flexibility

Program
m

er: has to do m
ore w

ork but can evolve and develop form
at

2
.5

NAM
ING FILES

Files usually have at least tw
o kinds of "nam

e":

System
 file identifier (SFID

): (typically) a unique integer value associated w
ith a

given file, used w
ithin the filesystem

 itself
Hum

an nam
e, e.g. hello.java: w

hat users like to use
M

ay have a third, User File Identifier (U
FID

) used to identify open files in
applications

M
apping from

 hum
an nam

e to SFID
 is held in a directory, e.g.,

N
ote that directories are also non-volatile so they m

ust
be stored on disk along w

ith files —
 w

hich explains w
hy

the storage system
 sits "below

" the directory service

2
.6

FILE M
ETADATA

N
B. H

aving resolved the nam
e to an SFID

,
the actual m

apping from
 SFID

 to File
Control Block (FCB) is O

S and filesystem
specific

In addition to their contents and their
nam

e(s), files typically have a num
ber of

other attributes or m
etadata, e.g.,

Location: pointer to file location on device
Size: current file size
Type: needed if system

 supports different types
Protection: controls w

ho can read, w
rite, etc.

Tim
e, date, and user identification: data for protection, security and usage

m
onitoring
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3
.1

DIRECTO
RIES

File Concepts
Directories

Nam
e Space Requirem

ents
Structure
Im

plem
entation

Files

3
.2

REQUIREM
ENTS

A directory provides the m
eans to translate a (user) nam

e to the location of the file
on-disk. W

hat are the requirem
ents?

Efficiency: locating a file quickly.
Nam

ing: user convenience
allow

 tw
o (or, m

ore generally, N
) users to have the sam

e nam
e for different

files
allow

 one file have several different nam
es

Grouping: logical grouping of files by properties, e.g., "all Java program
s", "all

gam
es"

3
.3

EARLY ATTEM
PTS

Single-level: one directory shared betw
een all users

nam
ing problem

grouping problem
Tw

o-level directory: one directory per user
access via pathnam

e (e.g., bob:hello.java)
can have sam

e filenam
e for different user

... but still no grouping capability.

Add a general hierarchy for m
ore flexibility

3
.4

STRUCTURE: TREE
D

irectories hold files or [further]
directories, reflecting structure of
organisation, users' files, etc

Create/delete files relative to a given
directory

Efficient searching and arbitrary grouping
capability

The hum
an nam

e is then the full path
nam

e, though these can get unw
iedly,

e.g., /usr/groups/X11R5/src/mit/server/os/4.2bsd/utils.c.
Resolve w

ith relative nam
ing, login directory, current w

orking directory. Sub-
directory deletion either by requiring directory em

pty, or by recursively deleting
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3
.5

STRUCTURE: DAG
H

ierarchy useful but only allow
s one

nam
e per file. Extend to directed acyclic

graph (D
AG) structure: allow

 shared
subdirectories and files, and m

ultiple
aliases for sam

e thing

M
anage dangling references: use back-

references or reference counts

O
ther issues include: deletion (m

ore
generally, perm

issions) and know
ing

w
hen ok to free disk blocks; accounting and w

ho gets "charged" for disk usage; and
cycles, and how

 w
e prevent them

3
.6

DIRECTORY IM
PLEM

ENTATION

D
irectories are non-volatile so store as "files" on disk, each w

ith ow
n SFID

M
ust be different types of file, for traversal

O
perations m

ust also be explicit as info in directory used for access control, or
could (eg) create cycles
Explicit directory operations include:

Create/delete directory
List contents
Select current w

orking directory
Insert an entry for a file (a "link")

4
.1

FILES
File Concepts
D

irectories
FilesO

perations
Im

plem
entation

Access Control, Existence Control, Concurrency Control

4
.2

OPERATIONS
Basic paradigm

 of use is: open, use, close

O
pening or creating a file: 

UFID = open(<pathname>) or 
UFID = create(<pathname>)

D
irectory service recursively searching directories for com

ponents of
<pathname>
Eventually get SFID for file, from

 w
hich UFID created and returned

Various m
odes can be used

Closing a file: status = close(UFID)

Copy [new
] file control block back to disk and invalidate UFID
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4
.3

IM
PLEM

ENTATION

Associate a cursor or file position w
ith each open file (viz. U

FID
), initialised to start

of file

Basic operations: read next or w
rite next, e.g., read(UFID, buf, nbytes),

or read(UFID, buf, nrecords)

Access pattern:

Sequential: adds rewind(UFID) to above
Direct Access: read(N) or write(N) using seek(UFID, pos)
M

aybe others, e.g., append-only, indexed sequential access m
ode (ISAM

)

4
.4

ACCESS CONTROL
File ow

ner/creator should be able to control w
hat can be done, by w

hom

File usually only accessible if user has both directory and file access rights
Form

er to do w
ith lookup process —

 can't look it up, can't open it
Assum

ing a D
AG structure, do w

e use the presented or the absolute path

Access control norm
ally a function of directory service so checks done at file open

tim
eE.g., read, w

rite, execute, (append?), delete, list, renam
e

M
ore advanced schem

es possible (see later)

4
.5

EXISTENCE CONTROL
W

hat if a user deletes a file?

Probably w
ant to keep file in existence w

hile there is a valid pathnam
e

referencing it
Plus check entire FS periodically for garbage
Existence control can also be a factor w

hen a file is renam
ed/m

oved.

 CONCURRENCY CONTROL
N

eed som
e form

 of locking to handle sim
ultaneous access

Can be m
andatory or advisory

Locks m
ay be shared or exclusive

Granularity m
ay be file or subset

5
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1
.1
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M
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1
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fork(2), wait(2)
Signals
Pipes
N

am
ed Pipes / FIFO

s
Shared M

em
ory Segm

ents
Files
U

nix D
om

ain Sockets

2
.1

CO
M

M
UNICATIO

N
Com

m
unication

Requirem
ents

Inter-Thread Com
m

unication
Inter-Host Com

m
unication

Inter-Process Com
m

unication
Inter-Process Com

m
unication

2
.2

REQUIREM
ENTS

For m
eaningful com

m
unication to take place, tw

o or m
ore parties have to exchange

inform
ation according to a protocol:

D
ata transferred m

ust be in a com
m

only-understood form
at (syntax)

D
ata transferred m

ust have m
utually-agreed m

eaning (sem
antics)

D
ata m

ust be transferred according to m
utually understood rules

(synchronisation)

In com
puter com

m
unications, the parties in question com

e in a range of form
s,

typically:

Threads
Processes
H

osts

Ignore problem
s of discovery, identification, errors, etc. for now
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2
.3

INTER-THREAD COM
M

UNICATION
It is a com

m
on requirem

ent for tw
o running threads to need to com

m
unicate

E.g., to coordinate around access to a shared variable

If coordination is not im
plem

ented, then all sorts of problem
s can occur. Range of

m
echanism

s to m
anage this:

M
utexes

Sem
aphores

M
onitors

Lock-Free D
ata Structures

...

N
ot discussed here!

You'll get into the details next year in Concurrent and Distributed System
s

(Particularly the first half, on Concurrency)

2
.4

INTER-HOST COM
M

UNICATION
Passing data betw

een different hosts:

Traditionally different physical hosts
N

ow
adays often virtual hosts

Key distinction is that there is now
 no shared m

em
ory, so som

e form
 of

transm
ission m

edium
 m

ust be used —
 netw

orking

Also not discussed here!

In som
e sense it is "harder" than IPC because real netw

orks are inherently:
Unreliable: data can be lost
Asynchronous: even if data is not lost, no guarantees can be given about
w

hen it arrived
You'll see a lot m

ore of this next year in Com
puter Netw

orking

2
.5

INTER-PROCESS COM
M

UNICATION
In the context of this course, w

e are concerned w
ith Inter-Process Com

m
unication

(IPC)

W
hat it says on the tin —

 com
m

unication betw
een processes on the sam

e host
Key point —

 it is possible to share m
em

ory betw
een those processes

Given the protection boundaries im
posed by the O

S, by design, the O
S m

ust be
involved in any com

m
unication betw

een processes

O
therw

ise it w
ould be tantam

ount to allow
ing one process to w

rite over
another's address space
W

e'll focus on PO
SIX m

echanism
s

3
.1

INTER-PRO
CESS

CO
M

M
UNICATIO

N
Com

m
unication

Inter-Process Com
m

unication
Concept
fork(2), wait(2)
Signals
Pipes
Nam

ed Pipes / FIFO
s

Shared M
em

ory Segm
ents

Files
Unix Dom

ain Sockets
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3
.2

CONCEPT
For IPC to be a thing, first you need m

ultiple processes

Initially created by running processes from
 a shell

Subsequently m
ay be created by those processes, ad infinitum

(...until your m
achine dies from

 your fork bom
b...)

Basic process m
echanism

s: fork(2) follow
ed by execve(2) and/or wait(2)

W
ill look at that plus several other com

m
on PO

SIX m
echanism

s

3
.3

F
O
R
K
(
2
), W

A
I
T
(
2
)

Sim
ply put, fork(2) allow

s a process to clone itself:

Parent process creates child process
Child receives copy-on-w

rite (CO
W

) snapshot of parent's address space

Parent typically then either:

D
etaches from

 child —
 hands responsibility back to init process

W
aits for child —

 calling wait(2), parent blocks until child exits

3
.4

SIGNALS
Sim

ple asynchronous notifications on another process

A range of signals (28 at m
y last count), defined as num

bers
M

apped to standard #defines, a few
 of w

hich have standard m
appings to

num
bers

Am
ong the m

ore com
m

on ones:

SIGHUP: hangup the term
inal (1)

SIGINT: term
inal interrupt (2)

SIGKILL: term
inate the process [cannot be caught or ignored] (9)

SIGTERM: term
inate process (15)

SIGSEGV: segm
entation fault —

 process m
ade an invalid m

em
ory reference

SIGUSR1/2: tw
o user signals [system

 defined num
bers]

U
se sigaction(2) to specify w

hat function the signalled process should invoke
on receipt of a given signal

3
.5

PIPES

Sim
plest form

 of IPC: pipe(2) returns a pair of file descriptors

(fd[0], fd[1]) are the (read, w
rite) fds

Coupled w
ith fork(2), can now

 com
m

unicate betw
een processes:

Invoke pipe(2) to get read/w
rite fds

fork(2) to create child process
Parent and child then both have read/w

rite fds available, and can com
m

unicate
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3
.6

NAM
ED PIPES / FIFOS

The sam
e as pipe(2) —

 except that it has a nam
e, and isn't just an array of tw

o
fdsThis m

eans that the tw
o parties can coordinate w

ithout needing to be in a
parent/child relationship
All they need is to share the (path)nam

e of the FIFO

Then sim
ply treat as a file:

open(2)
read(2)
write(2)

open(2) w
ill block by default, until som

e other process opens the FIFO
 for reading

Can set non-blocking via O_NDELAY

3
.7

SHARED M
EM

ORY SEGM
ENTS

W
hat it says on the tin —

 obtain a segm
ent of m

em
ory that is shared betw

een tw
o

(or m
ore) processes

shmget(2) to get a segm
ent

shmat(2) to attach to it

Then read and w
rite sim

ply via pointers —
 need to im

pose concurrency control to
avoid collisions though

Finally:

shmdt(2) to detach
shmctl(2) to destroy once you know

 no-one still using it

3
.8

FILES
Locking can be m

andatory (enforced) or advisory (cooperative)

Advisory is m
ore w

idely available
fcntl(2) sets, tests and clears the lock status
Processes can then coordinate over access to files
read(2), write(2), seek(2) to interact and navigate

M
em

ory M
apped Files present a sim

pler —
 and often m

ore efficient —
 API

mmap(2) "m
aps" a file into m

em
ory so you interact w

ith it via a pointer
Still need to lock or use som

e other concurrency control m
echanism

3
.9

UNIX DOM
AIN SOCKETS

Sockets are com
m

only used in netw
ork program

m
ing —

 but there is (effectively) a
shared m

em
ory version for use betw

een local processes, having the sam
e API:

socket(2) creates a socket, using AF_UNIX
bind(2) attaches the socket to a file
The interact as w

ith any socket
accept(2), listen(2), recv(2), send(2)
sendto(2), recvfrom(2)

Finally, socketpair(2) uses sockets to create a full-duplex pipe

Can read/w
rite from

 both ends
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4

SUM
M
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Com

m
unication
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m
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1
.1

[11] CASE STUDY: UNIX

1
.2

OUTLINE
Introduction
D

esign Principles
Structural, Files, D

irectory H
ierarchy

Filesystem
Files, D

irectories, Links, O
n-D

isk Structures
M

ounting Filesystem
s, In-M

em
ory Tables, Consistency

IO
Im

plem
entation, The Buffer Cache

Processes
U

nix Process D
ynam

ics, Start of D
ay, Scheduling and States

The Shell
Exam

ples, Standard IO
Sum

m
ary

2
.1

INTRO
DUCTIO

N
Introduction
D

esign Principles
Filesystem
IOProcesses
The Shell
Sum

m
ary

2
.2

HISTORY (I)
First developed in 1969 at Bell Labs (Thom

pson &
 Ritchie) as reaction to bloated

M
ultics. O

riginally w
ritten in PD

P-7 asm
, but then (1973) rew

ritten in the "new
"

high-level language C so it w
as easy to port, alter, read, etc. U

nusual due to need
for perform

ance

6th edition ("V6") w
as w

idely available (1976), including source m
eaning people

could w
rite new

 tools and nice features of other O
Ses prom

ptly rolled in

V6 w
as m

ainly used by universities w
ho could afford a m

inicom
puter, but not

necessarily all the softw
are required. The first really portable O

S as sam
e source

could be built for three different m
achines (w

ith m
inor asm

 changes)

Bell Labs continued w
ith V8, V9 and V10 (1989), but never really w

idely available
because V7 pushed to U

nix Support Group (U
SG) w

ithin AT&
T

AT&
T did System

 III first (1982), and in 1983 (after U
S governm

ent split Bells),
System

 V. There w
as no System

 IV
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2
.3

HISTORY (II)
By 1978, V7 available (for both the 16-bit PD

P-11 and the new
 32-bit VAX-11).

Subsequently, tw
o m

ain fam
ilies: AT&

T "System
 V", currently SVR4, and Berkeley:

"BSD
", currently 4.4BSD

Later standardisation efforts (e.g. PO
SIX, X/O

PEN
) to hom

ogenise

U
SD

L did SVR2 in 1984; SVR3 released in 1987; SVR4 in 1989 w
hich supported the

PO
SIX.1 standard

In parallel w
ith AT&

T story, people at U
niversity of California at Berkeley (U

CB)
added virtual m

em
ory support to "32V" [32-bit V7 for VAX] and created 3BSD

2
.4

HISTORY (III)
4BSD

 developm
ent supported by D

ARPA w
ho w

anted (am
ong other things) O

S
support for TCP/IP

By 1983, 4.2BSD
 released at end of original D

ARPA project

1986 saw
 4.3BSD

 released —
 very sim

ilar to 4.2BSD
, but lots of m

inor tw
eaks. 1988

had 4.3BSD
 Tahoe (som

etim
es 4.3.1) w

hich included im
proved TCP/IP congestion

control. 19xx saw
 4.3BSD

 Reno (som
etim

es 4.3.2) w
ith further im

proved congestion
control. Large rew

rite gave 4.4BSD
 in 1993; very different structure, includes LFS,

M
ach VM

 stuff, stackable FS, N
FS, etc.

Best know
n U

nix today is probably Linux, but also get FreeBSD
, N

etBSD
, and

(com
m

ercially) Solaris, O
SF/1, IRIX, and Tru64

2
.5

SIM
PLIFIED UNIX FAM

ILY TREE
Linux arises (from

 M
inix?) around 1991

(version 0.01), or m
ore realistically, 1994

(version 1.0). Linux version 2.0 out 1996.
Version 2.2 w

as out in 1998/ early 1999?)

You're not expected to m
em

orise this

3
.1

DESIGN PRINCIPLES
Introduction
Design Principles

Structural, Files, Directory Hierarchy
Filesystem
IOProcesses
The Shell
Sum

m
ary
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3
.2

DESIGN FEATURES
Ritchie &

 Thom
pson (CACM

, July 74), identified the (new
) features of U

nix:

A hierarchical file system
 incorporating dem

ountable volum
es

Com
patible file, device and inter-process IO

 (nam
ing schem

es, access control)
Ability to initiate asynchronous processes (i.e., address-spaces = heavyw

eight)
System

 com
m

and language selectable on a per-user basis

Com
pletely novel at the tim

e: prior to this, everything w
as "inside" the O

S. In U
nix

separation betw
een essential things (kernel) and everything else

Am
ong other things: allow

s user w
ider choice w

ithout increasing size of core O
S;

allow
s easy replacem

ent of functionality —
 resulted in over 100 subsystem

s
including a dozen languages

H
ighly portable due to use of high-level language

Features w
hich w

ere not included: real tim
e, m

ultiprocessor support

3
.3

STRUCTURAL OVERVIEW
Clear separation betw

een user and kernel
portions w

as the big difference betw
een

U
nix and contem

porary system
s —

 only
the essential features inside O

S, not the
editors, com

m
and interpreters, com

pilers,
etc.

Processes are unit of scheduling and
protection: the com

m
and interpreter

("shell") just a process

N
o concurrency w

ithin kernel

All IO
 looks like operations on files: in

U
nix, everything is a file

4
.1

FILESYSTEM
Introduction
D

esign Principles
Filesystem

Files, Directories, Links, O
n-Disk Structures

M
ounting Filesystem

s, In-M
em

ory Tables, Consistency
IOProcesses
The Shell
Sum

m
ary

4
.2

FILE ABSTRACTION
File as an unstructured sequence of bytes w

hich w
as relatively unusual at the tim

e:
m

ost system
s lent tow

ards files being com
posed of records

Cons: don't get nice type inform
ation; program

m
er m

ust w
orry about form

at of
things inside file
Pros: less stuff to w

orry about in the kernel; and program
m

er has flexibility to
choose form

at w
ithin file!

Represented in user-space by a file descriptor (fd) this is just an opaque identifier
—

 a good technique for ensuring protection betw
een user and kernel
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4
.3

FILE OPERATIONS
O

perations on files are:

fd = open(pathname, mode)
fd = creat(pathname, mode)
bytes = read(fd, buffer, nbytes)
count = write(fd, buffer, nbytes)
reply = seek(fd, offset, whence)
reply = close(fd)

The kernel keeps track of the current position w
ithin the file

D
evices are represented by special files:

Support above operations, although perhaps w
ith bizarre sem

antics
Also have ioctl for access to device-specific functionality

4
.4

DIRECTORY HIERARCHY
D

irectories m
ap nam

es to files (and
directories) starting from

 distinguished root
directory called /

Fully qualified pathnam
es m

ean perform
ing

traversal from
 root

Every directory has . and .. entries: refer to
self and parent respectively. Also have
shortcut of current w

orking directory (cw
d)

w
hich allow

s relative path nam
es; and the

shell provides access to hom
e directory as ~usernam

e (e.g. ~mort/). N
ote that

kernel know
s about form

er but not latter

Structure is a tree in general though this is slightly relaxed

4
.5

ASIDE: PASSW
ORD FILE

/etc/passwd holds list of passw
ord entries of the form

 user-
name:encrypted-passwd:home-directory:shell
Also contains user-id, group-id (default), and friendly nam

e.
U

se one-w
ay function to encrypt passw

ords i.e. a function w
hich is easy to

com
pute in one direction, but has a hard to com

pute inverse. To login:
Get user nam

e
Get passw

ord
Encrypt passw

ord
Check against version in /etc/passw

ord
If ok, instantiate login shell
O

therw
ise delay and retry, w

ith upper bound on retries
Publicly readable since lots of useful info there but perm

its offline attack
Solution: shadow

 passw
ords (/etc/shadow)

4
.6

FILE SYSTEM
 IM

PLEM
ENTATION

Inside the kernel, a file is represented by a data structure called an index-node or i-
node w

hich hold file m
eta-data: ow

ner, perm
issions, reference count, etc. and

location on disk of actual data (file contents)
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4
.7

I-NODES
W

hy don't w
e have all blocks in a sim

ple table?
W

hy have first few
 in inode at all?

H
ow

 m
any references to access blocks at different places in the file?

If block can hold 512 block-addresses (e.g. blocks are 4kB, block addresses are 8
bytes), w

hat is m
ax size of file (in blocks)?

W
here is the filenam

e kept?

4
.8

DIRECTORIES AND LINKS
D

irectory is (just) a file w
hich

m
aps filenam

es to i-nodes —
that is, it has its ow

n i-node
pointing to its contents

An instance of a file in a
directory is a (hard) link hence
the reference count in the i-
node. D

irectories can have at
m

ost 1 (real) link. W
hy?

Also get soft- or sym
bolic-

links: a 'norm
al' file w

hich contains a filenam
e

4
.9

ON-DISK STRUCTURES

A disk consists of a boot block follow
ed by one or m

ore partitions. Very old disks
w

ould have just a single partition. N
ow

adays have a boot block containing a
partition table allow

ing O
S to determ

ine w
here the filesystem

s are

Figure show
s tw

o com
pletely independent filesystem

s; this is not replication for
redundancy. Also note |inode table| 

 |superblock|; |data blocks| 
 |inode table|

4
.10

ON-DISK STRUCTURES
A partition is just a contiguous range of N

 fixed-size blocks of size k for som
e N

 and
k, and a U

nix filesystem
 resides w

ithin a partition

Com
m

on block sizes: 512B, 1kB, 2kB, 4kB, 8kB

Superblock contains info such as:

N
um

ber of blocks and free blocks in filesystem
Start of the free-block and free-inode list
Various bookkeeping inform

ation

Free blocks and inodes interm
ingle w

ith allocated ones

O
n-disk have a chain of tables (w

ith head in superblock) for each of these.
U

nfortunately this leaves superblock and inode-table vulnerable to head crashes so
w

e m
ust replicate in practice. In fact, now

 a w
ide range of U

nix filesystem
s that are

com
pletely different; e.g., log-structure
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4
.11

M
OUNTING FILESYSTEM

S
Entire filesystem

s can be
m

ounted on an existing
directory in an already m

ounted
filesystem

At very start, only / exists so
m

ust m
ount a root filesystem

Subsequently can m
ount other

filesystem
s, e.g.

mount("/dev/hda2",
"/home", options)

Provides a unified nam
e-space: e.g. access /home/mort/ directly (contrast w

ith
W

indow
s9x or N

T)

Cannot have hard links across m
ount points: w

hy? W
hat about soft links?

4
.12

IN-M
EM

ORY TABLES
Recall process sees files as file
descriptors

In im
plem

entation these are just
indices into process-specific open file
table

Entries point to system
-w

ide open file
table. W

hy?

These in turn point to (in m
em

ory)
inode table

4
.13

ACCESS CONTROL

Access control inform
ation held in each inode

Three bits for each of ow
ner, group and w

orld: read, w
rite and execute

W
hat do these m

ean for directories? Read entry, w
rite entry, traverse directory

In addition have setuid and setgid bits:

N
orm

ally processes inherit perm
issions of invoking user

Setuid/setgid allow
 user to "becom

e" som
eone else w

hen running a given
program
E.g. prof ow

ns both executable test (0711 and setuid), and score file (0600)

4
.14

CONSISTENCY ISSUES
To delete a file, use the unlink system

 call —
 from

 the shell, this is rm
<filename>

Procedure is:

Check if user has su cient perm
issions on the file (m

ust have w
rite access)

Check if user has su cient perm
issions on the directory (m

ust have w
rite access)

If ok, rem
ove entry from

 directory
D

ecrem
ent reference count on inode

If now
 zero: free data blocks and free inode

If crash: m
ust check entire filesystem

 for any block unreferenced and any block
double referenced

Crash detected as O
S know

s if crashed because root fs not unm
ounted cleanly
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4
.15

UNIX FILESYSTEM
: SUM

M
ARY

Files are unstructured byte stream
s

Everything is a file: "norm
al" files, directories, sym

bolic links, special files
H

ierarchy built from
 root (/)

U
nified nam

e-space (m
ultiple filesystem

s m
ay be m

ounted on any leaf directory)
Low

-level im
plem

entation based around inodes
D

isk contains list of inodes (along w
ith, of course, actual data blocks)

Processes see file descriptors: sm
all integers w

hich m
ap to system

 file table
Perm

issions for ow
ner, group and everyone else

Setuid/setgid allow
 for m

ore flexible control
Care needed to ensure consistency

5
.1

IOIntroduction
D

esign Principles
Filesystem
IO

Im
plem

entation, The Buffer Cache
Processes
The Shell
Sum

m
ary

5
.2

IO IM
PLEM

ENTATION
Everything accessed via the file system
Tw

o broad categories: block and character; ignoring low
-level gore:

Character IO
 low

 rate but com
plex —

 m
ost functionality is in the "cooked"

interface
Block IO

 sim
pler but perform

ance m
atters —

 em
phasis on the buffer cache

5
.3

THE BUFFER CACHE
Basic idea: keep copy of som

e parts of disk in m
em

ory for speed

O
n read do:

Locate relevant blocks (from
 inode)

Check if in buffer cache
If not, read from

 disk into m
em

ory
Return data from

 buffer cache

O
n w

rite do sam
e first three, and then update version in cache, not on disk

"Typically" prevents 85%
 of im

plied disk transfers
But w

hen does data actually hit disk?

Call sync every 30 seconds to flush dirty buffers to disk

Can cache m
etadata too —

 w
hat problem

s can that cause?

D
rRichard

M
ortier

IA
O
perating

System
s,2015/16

78/93



6
.1

PRO
CESSES

Introduction
D

esign Principles
Filesystem
IOProcesses

Unix Process Dynam
ics, Start of Day, Scheduling and States

The Shell
Sum

m
ary

6
.2

UNIX PROCESSES
Recall: a process is a program

 in execution

Processes have three segm
ents: text, data

and stack. U
nix processes are heavyw

eight

Text: holds the m
achine instructions for the

program

Data: contains variables and their values

Stack: used for activation records (i.e.
storing local variables, param

eters, etc.)

6
.3

UNIX PROCESS DYNAM
ICS

Process is represented by an opaque process id (pid), organised hierarchically w
ith

parents creating children. Four basic operations:

pid = fork ()
reply = execve(pathname, argv, envp)
exit(status)
pid = wait(status)

fork() nearly alw
ays

follow
ed by exec()

leading to vfork()
and/or copy-on-w

rite
(CO

W
). Also m

akes a copy
of entire address space
w

hich is not terribly
efficient

6
.4

START OF DAY
Kernel (/vmunix) loaded from

 disk (how
 —

 w
here's the filesystem

?) and execution
starts. M

ounts root filesystem
. Process 1 (/etc/init) starts hand-crafted

init reads file /etc/inittab and for each entry:

O
pens term

inal special file (e.g. /dev/tty0)
D

uplicates the resulting fd tw
ice.

Forks an /etc/tty process.

Each tty process next: initialises the term
inal; outputs the string login: &

 w
aits

for input; execve()'s /bin/login

login then: outputs "passw
ord:" &

 w
aits for input; encrypts passw

ord and checks it
against /etc/passwd; if ok, sets uid &

 gid, and execve() shell

Patriarch init resurrects /etc/tty on exit
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6
.5

UNIX PROCESS SCHEDULING (I)
Priorities 0-127; user processes 

 PU
SER = 50. Round robin w

ithin priorities,
quantum

 100m
s.

Priorities are based on usage and nice, i.e. 

gives the priority of process j at the beginning of interval i w
here: 

and 
 is a (partially) user controllable adjustm

ent param
eter in the range 

 is the sam
pled average length of the run queue in w

hich process  resides,
over the last m

inute of operation

6
.6

UNIX PROCESS SCHEDULING (II)
Thus if e.g. load is 1 this m

eans that roughly 90%
 of 1s CPU

 usage is "forgotten"
w

ithin 5s
Base priority divides processes into bands; CPU

 and nice com
ponents prevent

processes m
oving out of their bands. The bands are:

Sw
apper; Block IO

 device control; File m
anipulation; Character IO

 device
control; U

ser processes
W

ithin the user process band the execution history tends to penalize CPU
bound processes at the expense of IO

 bound processes

6
.7

UNIX PROCESS STATES

ru
=

running
(user-
m

ode)

rk
=

running
(kernel-
m

ode)

z
=

zom
bie

p
=

pre-
em

pted

sl
=

sleeping
rb

=
runnable

c
=

created

N
B. This is sim

plified —
 see Concurrent

System
s section 23.14 for detailed

descriptions of all states/transitions

7
.1

TH
E SH

ELL
Introduction
D

esign Principles
Filesystem
IOProcesses
The Shell

Exam
ples, Standard IO

Sum
m

ary
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7
.2

THE SHELL
Shell just a process like everything else.
N

eedn't understand com
m

ands, just files

U
ses path for convenience, to avoid needing

fully qualified pathnam
es

Conventionally & specifies background

Parsing stage (om
itted) can do lots: w

ildcard
expansion ("globbing"), "tilde" processing

7
.3

SHELL EXAM
PLES

$ pwd 
/Users/mort/src 
$ ls -F 
awk-scripts/    karaka/         ocamllint/          sh-scripts/ 
backup-scripts/ mrt.0/          opensharingtoolkit/ sockman/ 
bib2x-0.9.1/    ocal/           pandoc-templates/   tex/ 
c-utils/        ocaml/          pttcp/              tmp/ 
dtrace/         ocaml-libs/     pyrt/               uon/ 
exapraxia-gae/  ocaml-mrt/      python-scripts/         vbox-bridge/ 
external/       ocaml-pst/      r/ 
junk/           ocaml.org/      scrapers/ 
$ cd python-scripts/ 
/Users/mort/src/python-scripts 
$ ls -lF 
total 224 
-rw-r--r--   1 mort  staff  17987  2 Jan  2010 LICENSE 
-rw-rw-r--   1 mort  staff   1692  5 Jan 09:18 README.md 
-rwxr-xr-x   1 mort  staff   6206  2 Dec  2013 bberry.py* 
-rwxr-xr-x   1 mort  staff   7286 14 Jul  2015 bib2json.py* 
-rwxr-xr-x   1 mort  staff   7205  2 Dec  2013 cal.py* 
-rw-r--r--   1 mort  staff   1860  2 Dec  2013 cc4unifdef.py 
-rwxr-xr-x   1 mort  staff   1153  2 Dec  2013 filebomb.py* 
-rwxr-xr-x   1 mort  staff   1059  2 Jan  2010 forkbomb.py* 

Prom
pt is $. U

se man to find out about com
m

ands. U
ser friendly?

7
.4

STANDARD IO
Every process has three fds on creation:

stdin: w
here to read input from

stdout: w
here to send output

stderr: w
here to send diagnostics

N
orm

ally inherited from
 parent, but shell allow

s redirection to/from
 a file, e.g.,

ls >listing.txt
ls >&listing.txt
sh <commands.sh

Consider: ls >temp.txt; wc <temp.txt >results

Pipeline is better (e.g. ls | wc >results)
U

nix com
m

ands are often filters, used to build very com
plex com

m
and lines

Redirection can cause som
e buffering subtleties

8
.1

SUM
M

ARY
Introduction
D

esign Principles
Filesystem
IOProcesses
The Shell
Sum

m
ary
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8
.2

M
AIN UNIX FEATURES
File abstraction

A file is an unstructured sequence of bytes
(N

ot really true for device and directory files)
H

ierarchical nam
espace

D
irected acyclic graph (if exclude soft links)

Thus can recursively m
ount filesystem

s
H

eavy-w
eight processes

IO
: block and character

D
ynam

ic priority scheduling
Base priority level for all processes
Priority is low

ered if process gets to run
O

ver tim
e, the past is forgotten

But V7 had inflexible IPC, ine cient m
em

ory m
anagem

ent, and poor kernel
concurrency
Later versions address these issues.

9

SUM
M

ARY
Introduction
D

esign Principles
Structural, Files, D

irectory H
ierarchy

Filesystem
Files, D

irectories, Links, O
n-D

isk Structures
M

ounting Filesystem
s, In-M

em
ory Tables, Consistency

IO
Im

plem
entation, The Buffer Cache

Processes
U

nix Process D
ynam

ics, Start of D
ay, Scheduling and States

The Shell
Exam

ples, Standard IO
Sum

m
ary
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1
.1

[12] CASE STUDY: W
INDO

W
S NT

1
.2

OUTLINE
Introduction
D

esign Principles
D

esign
Structural
H

AL, Kernel
Processes and Threads, Scheduling
Environm

ental Subsystem
s

O
bjects

M
anager, N

am
espace

O
ther M

anagers: Process, VM
, Security Reference, IO

, Cache
Filesystem

s
FAT16, FAT32, N

TFS
N

TFS: Recovery, Fault Tolerance, O
ther Features

Sum
m

ary

2
.1

INTRO
DUCTIO

N
Introduction
D

esign Principles
D

esign
O

bjects
Filesystem

s
Sum

m
ary

2
.2

PRE-HISTORY
M

icrosoft and IBM
 co-developed O

S/2 —
 in hand-w

ritten 80286 assem
bly! As a

result, portability and m
aintainability w

eren't really strong features so in 1988
M

icrosoft decided to develop a "new
 technology" portable O

S supporting both O
S/2

and PO
SIX APIs

Goal: A 32-bit preem
ptive m

ultitasking operating system
 for m

odern
m

icroprocessors

O
riginally, N

T w
as supposed to use the O

S/2 API as its native environm
ent, but

during developm
ent N

T w
as changed to use the W

in32 API, reflecting the
popularity of W

indow
s 3.0
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2
.3

NEW
 TECHNOLOGY

After O
S/2, M

S decide they need "N
ew

 Technology":

1988: D
ave Cutler recruited from

 D
EC

1989: team
 (~10 people) starts w

ork on a new
 O

S w
ith a m

icro-kernel
architecture
Team

 grew
 to about 40 by the end, w

ith overall effort of 100 person-years
July 1993: first version (3.1) introduced. Sucked
Septem

ber 1994: N
T 3.5 released, providing m

ainly size and perform
ance

optim
isations

M
ay 1995: N

T 3.51 w
ith support for the Pow

er PC, and m
ore perform

ance tw
eaks

July 1996: N
T 4.0 w

ith "new
" (W

indow
s 95) look 'n' feel. Saw

 som
e desktop use

but m
ostly lim

ited to servers. Various functions pushed back into the kernel,
notably graphics rendering

2
.4

CONTINUED EVOLUTION
Feb 2000: N

T 5.0 aka W
indow

s 2000. Borrow
s from

 w
indow

s 98 look 'n' feel.
Provides server and w

orkstation versions, latter of w
hich starts to get w

ider use.
Big push to finally kill D

O
S/W

in9x fam
ily that fails due to internal politicking

O
ct 2001: W

indow
s XP (N

T 5.1) launched w
ith hom

e and professional editions.
Finally kills W

in9x. Several "editions" including M
edia Center [2003], 64-bit

[2005]) and Service Packs (SP1, SP2). 45 m
illion lines of code

2003: Server product 2K3 (N
T 5.2), basically the sam

e m
odulo registry tw

eaks,
support contract and of course cost. Com

es in m
any editions

2006: W
indow

s Vista (N
T 6.0). M

ore security, m
ore design, new

 APIs
2009: W

indow
s 7 (N

T 7.0). Focused m
ore on laptops and touch devices

2012: W
indow

s 8 (N
T 8.0). Radical new

 U
I w

ith tiles, focused on touch at least as
m

uch as supporting m
ouse/keyboard

2013: W
indow

s 8.1 (N
T 8.1). Back off the U

I a bit, m
ore custom

isation
2015: W

indow
s 10 (N

T 10.0). M
ore connectivity, for and betw

een devices

3
.1

DESIGN PRINCIPLES
Introduction
Design Principles
D

esign
O

bjects
Filesystem

s
Sum

m
ary

3
.2

KEY GOALS
Portability: hence w

ritten in C/C++ w
ith the H

AL to hide low
-level details

Security: new
 uniform

 access m
odel im

plem
ented via object m

anager, and
certified to U

S D
O

D
 level C2

PO
SIX com

pliance: believed this w
ould w

in sales, but desire to support both
PO

SIX and O
S/2 (later W

IN
32) im

pacted overall design
M

ultiprocessor support: m
ost sm

all O
Ss didn't have this, and traditional kernel

schem
es are less w

ell suited
Extensibility: because, som

etim
es, w

e get things w
rong; coupled w

ith the above
point, m

ost directly led to the use of a m
icro-kernel design

International support: sell to a bigger m
arket, m

eant adopting U
N

ICO
D

E as
fundam

ental internal nam
ing schem

e
Com

patibility w
ith M

S-DO
S/W

indow
s: don't w

ant to lose custom
ers, but achieved

partial com
patibility only...
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3
.3

OTHER GOALS
Reliability: N

T uses hardw
are protection for virtual m

em
ory and softw

are
protection m

echanism
s for operationg system

 resources
Com

patibility: applications that follow
 the IEEE 1003.1 (PO

SIX) standard can be
com

piled to run on N
T w

ithout changing the source code
Perform

ance: N
T subsystem

s can com
m

unicate w
ith one another via high-

perform
ance m

essage passing
Preem

ption: of low
 priority threads enable sthe system

 to respond quickly to
external events
D

esigned for sym
m

etrical m
ultiprocessing

3
.4

THE RESULT
D

evelopm
ent of a system

 w
hich w

as:

W
ritten in high-level languages (C and C++)

H
ence portable to other m

achines, w
ith

Processor-dependent code isolated in a dynam
ic link library (H

AL)
Based around a m

icro-kernel
H

ence extensibility and m
ultiprocessor support

Constructed in a layered/m
odular fashion

E.g. environm
ental subsystem

s

4
.1

DESIGN
Introduction
D

esign Principles
Design

Structural
HAL, Kernel
Processes and Threads, Scheduling
Environm

ental Subsystem
s

O
bjects

Filesystem
s

Sum
m

ary

4
.2

STRUCTURAL OVERVIEW
Both layered and m

odular ("layered
system

 of m
odules")

Interactions at top are m
essage

passing (IPC/LPC); next dow
n is system

calls (traps); below
 is direct invocation

N
ote that this is a static representation;

in practice subsystem
s are D

LLs (plus a
few

 services); also have various threads
running below

Kernel M
ode: H

AL, Kernel, &
 Executive

User M
ode: environm

ental subsystem
s,

protection subsystem
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4
.3

KERNEL M
ODE

Hardw
are Abstraction Layer (H

AL): Layer of softw
are (H

A
L
.
D
E
L
L) hiding hardw

are
details, e.g., interrupt m

echanism
s, D

M
A controllers, m

ultiprocessor com
m

unication
m

echanism
s. M

any im
plem

entations to the sam
e interface

Kernel: Foundation for the executive and the subsystem
s, its execution is never

preem
pted (it can be interrupted, but w

ill alw
ays resum

e)

Four m
ain responsibilities:

1. CPU scheduling: hybrid dynam
ic/static priority scheduling

2. Interrupt and exception handling: kernel provides trap handling w
hen exceptions

and interrupts are generated by hardw
are or softw

are. If the trap handler can't
handle the exception, the kernel's exception dispatcher does. H

andle interrupts
by either ISR or internal kernel routine

3. Low
-level processor synchronisation: spin locks that reside in global m

em
ory to

achieve m
ultiprocessor m

utual exclusion, norm
ally provided by H

AL
4. Recovery after a pow

er failure
4
.4

KERNEL
Kernel is object oriented; all objects either dispatcher objects or control objects

D
ispatcher objects have to do w

ith dispatching and synchronisation, i.e. they are
active or tem

poral things like
Threads: basic unit of [CPU

] dispatching
Events: record event occurrences &

 synchronise
Tim

er: tracks tim
e, signals "tim

e-outs"
M

utexes: m
utual exclusion in kernel m

ode
M

utants: as above, but w
ork in user m

ode too
Sem

aphores: does w
hat it says on the tin

Control objects represent everything else, e.g.,
Process: representing VAS and m

iscellaneous other bits
Interrupt: binds ISR to an interrupt source [H

AL]

4
.5

PROCESSES AND THREADS
N

T splits the virtual processor into tw
o parts:

A process, the unit of resource ow
nership. Each has:

A security token
A virtual address space
A set of resources (object handles)
O

ne or m
ore threads

A thread, the unit of dispatching. Each has:
A scheduling state (ready, running, etc.)
O

ther scheduling param
eters (priority, etc.)

A context slot
An associated process (generally)

Threads have one of six states: ready, standby, running, w
aiting, transition,

term
inated. They are co-operative: all in a process share the sam

e address space &
object handles; lightw

eight: less w
ork to create/delete than processes (shared

virtual addresss spaces)
4
.6

CPU SCHEDULING
A process starts via the C

r
e
a
t
e
P
r
o
c
e
s
s routine, loading any dynam

ic link
libraries that are used by the process and creating a prim

ary thread. Additional
threads can be created via the C

r
e
a
t
e
T
h
r
e
a
d function

H
ybrid static/dynam

ic priority scheduling:

Priorities 16—
31: "real tim

e" (static) priority
Priorities 1—

15: "variable" (dynam
ic) priority

Priority 0 is reserved for the zero page thread

D
efault quantum

 2 ticks (
20m

s) on W
orkstation, 12 ticks (

120m
s) on Server
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4
.7

CPU SCHEDULING
Som

e very strange things to rem
em

ber:

W
hen thread blocks, it loses 1/3 tick from

 quantum
W

hen thread preem
pted, m

oves to head of ow
n run queue

Threads have base and current (
base) priorities.

O
n return from

 IO
, current priority is boosted by driver-specific am

ount.
Subsequently, current priority decays by 1 after each com

pleted quantum
.

Also get boost for GU
I threads aw

aiting input: current priority boosted to 14 for
one quantum

 (but quantum
 also doubled)

Yes, this is true

O
n W

orkstation also get quantum
 stretching:

"... perform
ance boost for the foreground application" (w

indow
 w

ith focus)
Foreground thread gets double or triple quantum

4
.8

ENVIRONM
ENTAL SUBSYSTEM

S
U

ser-m
ode processes layered over the native N

T executive services to enable N
T

to run program
s developed for other operating system

s
N

T uses the W
in32 subsystem

 as the m
ain operating environm

ent; W
in32 is used

to start all processes. It also provides all the keyboard, m
ouse and graphical

display capabilities
M

S-D
O

S environm
ent is provided by a W

in32 application called the virtual dos
m

achine (VD
M

), a user-m
ode process that is paged and dispatched like any other

N
T thread

16-Bit W
indow

s Environm
ent:

Provided by a VD
M

 that incorporates W
indow

s on W
indow

s
Provides the W

indow
s 3.1 kernel routines and stub routings for w

indow
m

anager and GD
I functions

The PO
SIX subsystem

 is designed to run PO
SIX applications follow

ing the
PO

SIX.1 standard w
hich is based on the U

nix m
odel

5
.1

O
BJECTS

Introduction
D

esign Principles
D

esign
O

bjects
M

anager, Nam
espace

O
ther M

anagers: Process, VM
, Security Reference, IO

, Cache
Filesystem

s
Sum

m
ary

5
.2

OBJECTS AND M
ANAGERS

In U
nix, everything is a file —

 in N
T, everything is an object

Every resource in N
T is represented by an (executive) object

Kernel objects are re-exported at executive level by encapsulation
O

bjects com
prise a header and a body, and have a type (approxim

ately 15 types
in total)
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5
.3

THE OBJECT M
ANAGER

Responsible for:

Creating and tracking objects and object handles. An object handle represents an
open object and is process-local, som

ew
hat analogous to an fd

Perform
ing security checks

O
bjects are m

anipulated by a standard set of m
ethods, nam

ely c
r
e
a
t
e, o

p
e
n,

c
l
o
s
e, d

e
l
e
t
e, q

u
e
r
y
 
n
a
m
e, p

a
r
s
e and s

e
c
u
r
i
t
y. These are usually per

type ("class") and hence im
plem

ented via indirection through the associated type
object. N

ot all w
ill be valid (specified) for all object types

h
a
n
d
l
e
 
=
 
o
p
e
n
(
o
b
j
e
c
t
n
a
m
e
,
 
a
c
c
e
s
s
m
o
d
e
)

r
e
s
u
l
t
 
=
 
s
e
r
v
i
c
e
(
h
a
n
d
l
e
,
 
a
r
g
u
m
e
n
t
s
)

A process gets an object handle by creating an object, by opening an existing
one, by receiving a duplicated handle from

 another process, or by inheriting a
handle from

 a parent process

5
.4

THE OBJECT NAM
ESPACE

O
bjects (optionally) have a nam

e, tem
porary

or perm
anent, given via the N

T executive

The O
bject M

anger m
anages a hierarchical

nam
espace, shared betw

een all processes.
The nam

espace is im
plem

ented via directory
objects analogous to filesystem

 directories

Each object is protected by an access control
list. N

am
ing dom

ains (im
plem

ented via p
a
r
s
e) m

ean filesystem
 nam

espaces can
be integrated

O
bject nam

es structured like file path nam
es in M

S-D
O

S and U
nix. Sym

bolic link
objects allow

 m
ultiple nam

es (aliases) for the sam
e object. M

odified view
 presented

at API level: the W
in32 m

odel has m
ultiple "root" points (e.g., C

:, D
:, etc) so even

though w
as all nice &

 sim
ple, gets screw

ed up

5
.5

PROCESS M
ANAGER

Provides services for creating, deleting, and using threads and processes. Very
flexible:

N
o built in concept of parent/child relationships or process hierarchies

Processes and threads treated orthogonally

...thus can support Posix, O
S/2 and W

in32 m
odels

It's up to environm
ental subsystem

 that ow
ns the process to handle any

hierarchical relationships (e.g. inheritance, cascading term
ination, etc)

E.g., as noted above, in W
in32: a process is started via the C

r
e
a
t
e
P
r
o
c
e
s
s
(
)

function w
hich loads any dynam

ic link libraries that are used by the process and
creates a prim

ary thread; additional threads can be created by the
C
r
e
a
t
e
T
h
r
e
a
d
(
) function

5
.6

VIRTUAL M
EM

ORY M
ANAGER

Assum
es that the underlying hardw

are supports virtual to physical m
apping, a

paging m
echanism

, transparent cache coherence on m
ultiprocessor system

s, and
virtual address aliasing. N

T em
ploys paged virtual m

em
ory m

anagem
ent, The VM

M
provides processes w

ith services to:

Allocate and free virtual m
em

ory via tw
o step process: reserve a portion of the

process's address space, then com
m

it the allocation by assigning space in the N
T

paging file
M

odify per-page protections, in one of six states: valid, zeroed, free, standby,
m

odified and bad
Share portions of m

em
ory using section objects (

softw
are segm

ents), based
verus non-based, as w

ell as m
em

ory-m
apped files

A section object is a region of [virtual] m
em

ory w
hich can be shared, containing:

m
ax size, page protection, paging file (or m

apped file if m
m

ap) and based vs non-
based (m

eaning does it need to appear at sam
e address in all process address

spaces (based), or not (non-based)?)
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5
.7

SECURITY REFERENCE M
ANAGER

N
T's object-oriented nature enables a uniform

 m
echanism

 for runtim
e access and

audit checks

Every tim
e a process opens handle to an object, check that process's security

token and object's ACL
Com

pare w
ith U

nix (filesystem
, netw

orking, w
indow

 system
, shared m

em
ory, ...)

5
.8

LOCAL PROCEDURE CALL FACILITY
Local Procedure Call (LPC) (or IPC) passes requests and results betw

een client and
server processes w

ithin a single m
achine

U
sed to request services from

 the various N
T environm

ental subsystem
s

Three variants of LPC channels:
1. sm

all m
essages (

256 bytes): copy m
essages betw

een processes
2. zero copy: avoid copying large m

essages by pointing to a shared m
em

ory
section object created for the channel

3. quick LPC: used by the graphical display portions of the W
in32 subsystem

5
.9

IO M
ANAGER

The IO
 M

anager is responsible for file system
s, cache m

anagem
ent, device drivers

Keeps track of w
hich installable file system

s are loaded, m
anages buffers for IO

requests, and w
orks w

ith VM
M

 to provide m
em

ory-m
apped files

Controls the N
T cache m

anager, w
hich handles caching for the entire IO

 system
(ignore netw

ork drivers for now
)

5
.10

IO OPERATIONS
Basic m

odel is asynchronous:

Each IO
 operation explicitly split into a request and a response

IO
 Request Packet (IRP) used to hold param

eters, results, etc.

This allow
s high levels of flexibility in im

plem
enting IO

 type (can im
plem

ent
synchronous blocking on top of asynchronous, other w

ay round is not so easy)

Filesystem
 &

 device drivers are stackable (plug'n'play)
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5
.11

CACHE M
ANAGER

Caches "virtual blocks", keeping track of cache "lines" as offsets w
ithin a file

rather than a volum
e —

 disk layout &
 volum

e concept abstracted aw
ay

N
o translation required for cache hit

Can get m
ore intelligent prefetching

Com
pletely unified cache:

Cache "lines" all in virtual address space.
D

ecouples physical &
 virtual cache system

s: e.g. virtually cache in 256kB
blocks, physically cluster up to 64kB

N
T virtual m

em
ory m

anager responsible for actually doing the IO
Allow

s lots of FS cache w
hen VM

 system
 lightly loaded, little w

hen system
 is

thrashing
N

T/2K also provides som
e user control:

If specify tem
porary attrib w

hen creating file m
eans it w

ill never be flushed to
disk unless necessary
If specify w

rite through attrib w
hen opening a file m

eans all w
rites w

ill
synchronously com

plete
6
.1

FILESYSTEM
S

Introduction
D

esign Principles
D

esign
O

bjects
Filesystem

s
FAT16, FAT32, NTFS
NTFS: Recovery, Fault Tolerance, O

ther Features
Sum

m
ary

6
.2

FILE SYSTEM
S: FAT16

 

FAT16 (originally just "FAT") is a
floppy disk form

at from
M

icrosoft (1977) but w
as used

for hard-disks up to about 1996.
It's quite a sim

ple file system
w

hich basically uses the
"chaining in a m

ap" technique
described in lectures to m

anage
files

A file is a linked list of clusters: a cluster is a set of 
 contiguous disk blocks, 

. Each entry in the FAT contains either: the index of another entry w
ithin the

FAT, or a special value EO
F m

eaning "end of file", or a special value Free m
eaning

"free". D
irectory entries contain index into the FAT. FAT16 could only handle

partitions up to (
) bytes m

eans a m
ax 2GB partition w

ith 32kB clusters (and
big cluster size is bad)

6
.3

FILE SYSTEM
S: FAT32

O
bvious extetension: instead of using 2 bytes per entry, FAT32 uses 4 bytes per

entry, so can support e.g. 8Gb partition w
ith 4kB clusters

Further enhancem
ents w

ith FAT32 include:
Can locate the root directory anyw

here on the partition (in FAT16, the root
directory had to im

m
ediately follow

 the FAT(s))
Can use the backup copy of the FAT instead of the default (m

ore fault
tolerant)
Im

proved support for dem
and paged executables (consider the 4kB default

cluster size)
VFAT on top of FAT32 does long nam

e support: unicode strings of up to 256
characters
W

ant to keep sam
e directory entry structure for com

patibility w
ith, e.g., D

O
S

so use m
ultiple directory entries to contain successive parts of nam

e
Abuse V attribute to avoid listing these

Still pretty prim
itive...
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6
.4

FILESYSTEM
S: NTFS

Fundam
ental structure of N

TFS is a volum
e:

Based on a logical disk partition
M

ay occupy a portion of a disk, and entire disk, or span across several disks

6
.5

NTFS FORM
AT

N
TFS uses clusters as the underlying unit of disk allocation:

A cluster is a num
ber of disk sectors that is a pow

er of tw
o

Because the cluster size is sm
aller than for the 16-bit FAT file system

, the
am

ount of internal fragm
entation is reduced

N
TFS uses logical cluster num

bers (LCN
s) as disk addresses

The N
TFS nam

e space is organized by a hierarchy of directories; the index root
contains the top level of the B+ tree

An array of file records is stored in a special file called the M
aster File Table (M

FT),
indexed by a file reference (a 64-bit unique identifier for a file). A file itself is a
structured object consisting of set of attribute/value pairs of variable length:

Each file on an N
TFS volum

e has a unique ID
 called a file reference: a 64-bit

quantity that consists of a 16-bit file num
ber and a 48-bit sequence num

ber
used to perform

 internal consistency checks
M

FT indexed by file reference to get file record

6
.6

NTFS: RECOVERY
To aid recovery, all file system

 data structure updates are perform
ed inside

transactions:

Before a data structure is altered, the transaction w
rites a log record that

contains redo and undo inform
ation

After the data structure has been changed, a com
m

it record is w
ritten to the log

to signify that the transaction succeeded
After a crash, the file system

 can be restored to a consistent state by processing
the log records

D
oes not guarantee that all the user file data can be recovered after a crash —

 just
that m

etadata files w
ill reflect som

e prior consistent state. The log is stored in the
third m

etadata file at the beginning of the volum
e ($

L
o
g
f
i
l
e):

N
T has a generic log file service that could be used by e.g. databases

M
akes for far quicker recovery after crash

M
odern U

nix filesystem
s eg., e

x
t
3, x

f
s use a sim

ilar schem
e

6
.7

NTFS: FAULT TOLERANCE

F
t
D
i
s
k driver allow

s m
ultiple partitions be com

bined into a logical volum
e:

Logically concatenate m
ultiple disks to form

 a large logical volum
e, a volum

e set
Based on the concept of RAID

 = Redundant Array of Inexpensive D
isks

E.g., RAID
 level 0: interleave m

ultiple partitions round-robin to form
 a stripe set

E.g., RAID
 level 1 increases robustness by using a m

irror set: tw
o equally sized

partitions on tw
o disks w

ith identical data contents
(O

ther m
ore com

plex RAID
 levels also exist)

F
t
D
i
s
k can also handle sector sparing w

here the underlying SCSI disk supports it;
if not, N

TFS supports s/w
 cluster rem

apping
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6
.8

NTFS: OTHER FEATURES (I)
Security

Security derived from
 the N

T object m
odel

Each file object has a security descriptor attribute stored in its M
FT record

This atrribute contains the access token of the ow
ner of the file plus an access

control list

Com
pression

N
TFS can divide a file's data into com

pression units (blocks of 16 contiguous
clusters) and supports sparse files

Clusters w
ith all zeros not allocated or stored

Instead, gaps are left in the sequences of VCN
s kept in the file record

W
hen reading a file, gaps cause N

TFS to zero-fill that portion of the caller's
buffer

6
.9

NTFS: OTHER FEATURES (I)
Encryption

U
se sym

m
etric key to encrypt files; file attribute holds this key encrypted w

ith
user public key
Problem

s:
Private key pretty easy to obtain; and
Adm

inistrator can bypass entire thing anyhow

7
.1

SUM
M

ARY
Introduction
D

esign Principles
D

esign
O

bjects
Filesystem

s
Sum

m
ary

7
.2

SUM
M

ARY
M

ain W
indow

s N
T features are:

Layered/m
odular architecture

Generic use of objects throughout
M

ulti-threaded processes &
 m

ultiprocessor support
Asynchronous IO

 subsystem
N

TFS filing system
 (vastly superior to FAT32)

Preem
ptive priority-based scheduling

D
esign essentially m

ore advanced than U
nix.

Im
plem

entation of low
er levels (H

AL, kernel &
 executive) actually rather decent

But: has historically been crippled by
Alm

ost exclusive use of W
in32 API

Legacy device drivers (e.g. VXD
s)

Lack of dem
and for "advanced" features

Continues to evolve: Singularity, D
raw

bridge, W
indow

s 10, ...
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8

SUM
M
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Introduction
D

esign Principles
D

esign
Structural
H

AL, Kernel
Processes and Threads, Scheduling
Environm

ental Subsystem
s

O
bjects

M
anager, N

am
espace

O
ther M

anagers: Process, VM
, Security Reference, IO

, Cache
Filesystem

s
FAT16, FAT32, N

TFS
N

TFS: Recovery, Fault Tolerance, O
ther Features
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m
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