OS STRUCTURES

e Protection

Low-level Mechanisms

Authentication

Access Matrix

0S Structures
= Dual-mode Operation, Kernels & Microkernels
= Mandatory Access Control, pledge (2)

DUAL-MODE OPERATION

interrupt or fault

reset Kernel User
\Iv Mode Mode

set user mode

Simply want to stop buggy (or malicious) program from doing bad things

e Trust boundary between user application and the OS

¢ Use hardware support to differentiate between (at least) two modes of operation
1. User Mode : when executing on behalf of a user (i.e. application programs).
2. Kernel Mode : when executing on behalf of the OS

* Make certain instructions only possible in kernel mode, indicated by mode bit

E.g., x86:Rings 0--3, ARM has two modes plus IRQ, Abort and FIQ

Often "nested” (per x86 rings): further inside can do strictly more. Not ideal — e.g,,
stop kernel messing with applications — but disjoint/overlapping permissions hard

KERNEL-BASED OPERATING SYSTEMS

Applications can't do 10 due to protection so the OS
does it on their behalf

App. | | App. || App. [ | App.

This means we need a secure way for application to
invoke OS: a special (unprivileged) instruction to
transition from user to kernel mode

Unpriv
Priv | Kernel

Generally called a trap or a software interrupt since
operates similarly to (hardware) interrupt...

OS services accessible via software interrupt
mechanism called system calls

OS has vectors to handle traps, preventing application from leaping to kernel mode
and then just doing whatever it likes

Alternative is for OS to emulate for application, and check every instruction, as used
in some virtualization systems, e.g., OEMU

MICROKERNEL OPERATING SYSTEMS

We've protected "privileged instructions” via dual-mode operation, memory via
special hardware, and the CPU via use of a timer. But now applications can't do
much directly and must use OS to do it on their behalf

OS must be very stable to support apps, so becomes hard to extend

Alternative is microkernels: move OS services into
(Local) servers, which may be privileged App. | App. || Ape. | Acp.

Increases both modularity and extensibility \

Server Server

Still access kernel via system calls, but need new ways

to access servers: Inter-Process Communication (IPC)  unpriv \ 4
Pri r vi Vi
schemes ST S | [ orver

Given talking to servers (largely) replaces trapping,
need IPC schemes to be extremely efficient sw

Kernel {scheduler |
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KERNELS VS MICROKERNELS

So why isn't everything a microkernel?

e Lots of IPC adds overhead, so microkernels (perceived as) usually performing less
well

e Microkernel implementation sometimes tricky: need to worry about
synchronisation

» Microkernels often end up with redundant copies of OS data structures

Thus many common OSs blur the distinction between kernel and microkernel.

e E.g. Linux is "kernel", but has kernel modules and certain servers.

e E.g. Windows NT was originally microkernel (3.5), but now (4.0 onwards) pushed
lots back into kernel for performance

e Unclear what the best OS structure is, or how much it really matters...

VIRTUAL MACHINES AND CONTAINERS

More recently, trend towards encapsulating applications differently. Roughly aimed
towards making applications appear as if they're the only application running on
the system. Particularly relevant when building systems using microservices.
Protection, or isolation at a different level

« Virtual Machines encapsulate an entire running system, including the OS, and
then boot the VM over a hypervisor
E.g., Xen, VMWare ESX, Hyper-V

« Containers expose functionality in the OS so that each container acts as a
separate entity even though they all share the same underlying OS functionality

E.g., Linux Containers, FreeBSD Jails, Solaris Zones

MANDATORY ACCESS CONTROL

From a user point of view, nowadays one often wants to
protect applications from each other, all owned by a
single user. Indeed, with personal single-user machines
now common (phones, tablets, laptops), arguable that
protection model is mismatched

https://xkcd.com/1200/

Mandatory Access Control (MAC) mandates expression
of policies constraining interaction of system users

E.g., OSX and iOS Sandbox uses subject/object labelling ~ ¥ soMeone STEALS 1 LaproP WHLE T
. .. . LOGGED IN, THEY CAN READ MY EMAIL, TRKE MY
to implement access-control for privileges and various — MoNey A MPERSONATE ME To MY FRENDS,

. . . BUT AT LEAST THEY CANT INSTALL
resources (filesystem, communication, APIs, etc) DRVERS WITHOUT MY PERMSSION.

PLEDGE (2)

One way to reduce the ability of a compromised program to do Bad Things™ is to
remove access to unnecessary system calls

Several attempts in different systems, with varying (limited) degrees of success:

» Hard to use correctly (e.g., Capsicum), or
¢ Introduce another component that needs to be watched (e.g., seccomp)

Observation:

¢ Most programs follow a pattern of initialization() thenmain loop(),
and

e Themain loop () typically uses a much narrower class of system calls than
initialization()

Result? pledge (2) — ask the programmer to indicate explicitly which classes of
system call they wish to use at any point, e.g,, stdio, route, inet

Dr Richard Mortier
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SUMMARY

 Protection
= Motivation, Requirements, Subjects & Objects
= Design of Protection Systems
= Covert Channels
Low-level Mechanisms
= |0, Memory, CPU
Authentication
= User to System, System to User
= Mutual Suspicion
e Access Matrix
= Access Control Lists (ACLs) vs Capabilities
OS Structures
= Dual-mode Operation, Kernels & Microkernels
= Mandatory Access Control, pledge(2)
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[03] PROCESSES

OUTLINE

e Process Concept
= Relationship to a Program
= What is a Process?
e Process Lifecycle
= Creation
= Termination
= Blocking
¢ Process Management
= Process Control Blocks
= Context Switching
= Threads

PROCESS CONCEPTS

» Process Concept
= Relationship to a Program
= What is a Process?

e Process Lifecycle

e Process Management

WHAT IS APROCESS?

The computer is there to execute programs, not the operating system!

Process # Program

« A program is static, on-disk

» A process is dynamic, a program in execution

On a batch system, might refer to jobs instead of processes

Dr Richard Mortier
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WHAT IS APROCESS?

Unit of protection and resource allocation

« So you may have multiple copies of a process running
e Each process executed on a virtual processor

Has a virtual address space (later)
Has one or more threads, each of which has

1. Program Counter: which instruction is executing

2. Stack: temporary variables, parameters, return addresses, etc.

3. Data Section: global variables shared among threads

PROCESS STATES

dispatch

timeout
or yield

event event-wait

Blocked

New: being created

Running: instructions are being executed
Ready: waiting for the CPU, ready to run
Blocked: stopped, waiting for an event to occur
Exit: has finished execution

release e

PROCESS LIFECYCLE

e Process Concept
 Process Lifecycle

= Creation

= Termination

= Blocking
e Process Management

PROCESS CREATION

Nearly all systems are hierarchical:
parent processes create child processes

» Resource sharing:
= Parent and children share all resources
= Children share subset of parent's resources
= Parent and child share no resources

Dr Richard Mortier
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PROCESS CREATION

Nearly all systems are hierarchical:
parent processes create child processes

e Resource sharing

e Execution:
= Parent and children execute concurrently
= Parent waits until children terminate

PROCESS CREATION

Nearly all systems are hierarchical:
parent processes create child processes

e Resource sharing
e Execution
o Address space:
= Child duplicate of parent
= Child has a program loaded into it

EXAMPLES
Unix:

e fork() system call creates a child process, cloned from parent; then

e execve () system call used to replace the process’ memory space with a new
program

NT/2K/XP:

e CreateProcess () system call includes name of program to be executed

PROCESS TERMINATION

Occurs under three circumstances

1. Process executes last statement and asks the operating system to delete it (exit):
» QOutput data from child to parent (wait)
» Process' resources are deallocated by the OS
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PROCESS TERMINATION

Occurs under three circumstances

1. Process executes last statement and asks the operating system to delete it
2. Process performs an illegal operation, e.g.,
e Makes an attempt to access memory to which it is not authorised
 Attempts to execute a privileged instruction

PROCESS TERMINATION

Occurs under three circumstances

1. Process executes last statement and asks the operating system to delete it
2. Process performs an illegal operation
3. Parent may terminate execution of child processes (abort, kill), e.g. because
« Child has exceeded allocated resources
 Task assigned to child is no longer required
« Parent is exiting ("cascading termination”)

EXAMPLES

Unix

e wait(),exit()andkill()
NT/2K/XP

e ExitProcess () for self
e TerminateProcess () for others.

BLOCKING

¢ In general a process blocks on an event, e.g.,
= An |0 device completes an operation
= Another process sends a message
¢ Assume OS provides some kind of general-purpose blocking primitive, e.g.,
await()
* Need care handling concurrency issues, e.g.,

if(no key being pressed) {
await (keypress)
print("Key has k

}

= What happens if a key is pressed at the first {?
= Complicated! Next year... Ignore for now )

Dr Richard Mortier
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CPU 10 BURST CYCLE

» Process execution consists of a cycle of CPU execution and 10 wait
 Processes can be described as either:
1. 10-bound: spends more time doing |0 that than computation; has many short
CPU bursts
2. CPU-bound: spends more time doing computations; has few very long CPU
bursts

CPU 10 BURST CYCLE

Frequency

vt
-

o
o
S

-

5

<

s

CPU Burst Duration (ms)

Observe that most processes execute for at most a few milliseconds before
blocking

We need multiprogramming to obtain decent overall CPU utilisation

PROCESS MANAGEMENT

e Process Concept

¢ Process Lifecycle

¢ Process Management
= Process Control Blocks
= Context Switching
= Threads

PROCESS CONTROL BLOCK

Process Number (or Process ID)

OS maintains information about every process in a

Current Process State

CPU Scheduling Information

data structure called a process control block (PCB). The

Program Counter

Process Context (highlighted) is the machine

environment during the time the process is actively Other CPU Registers

using the CPU:

Memory Mangement Information

Other Information
(e.g. list of open files, name of
executable, identity of owner, CPU
time used so far, devices owned)

Program counter
General purpose registers

¢ Processor status register <—f_Refsto previous and next PCBs 4=
¢ [ Caches, TLBs, Page tables, ... |
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CONTEXT SWITCHING

« To switch between processes, the OS must:
= Save the context of the currently
executing process (if any), and
= Restore the context of that being
resumed.
« Note this is wasted time — no useful work is
carried out while switching
« Time taken depends on hardware support
= From nothing, to
= Save/load multiple registers to/from
memory, to
= Complete hardware "task switch”

Process A Operating System

executing
Save State into PCB A
idle H :

Restore State from PCB B ——————

Save State into PCB B 2\

<«——— Restore State from PCB A
executing

Process B

idle

executing

idle

THREADS

A thread represents an individual execution context
Threads are managed by a scheduler that determines which thread to run

Each thread has an associated Thread Control Block (TCB) with metadata about the
thread: saved context (registers, including stack pointer), scheduler info, etc.

Context switches occur when the OS saves the state of one thread and restores the
state of another. If between threads in different processes, process state also
switches

Threads visible to the OS are kernel threads — may execute in kernel or address
user space

SUMMARY

e Process Concept
= Relationship to a program
= What is a process?
e Process Lifecycle
= Creation
= Termination
= Blocking
e Process Management
= Process Control Blocks
= Context Switching
= Threads
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[04] SCHEDULING

OUTLINE

¢ Scheduling Concepts
= Queues
= Non-preemptive vs Preemptive
= |dling
e Scheduling Criteria
= Utilisation
= Throughput
= Turnaround, Waiting, Response Times
e Scheduling Algorithms
= First-Come First-Served
Shortest Job First
Shortest Response Time First
Predicting Burst Length
Round Robin
Static vs Dynamic Priority

SCHEDULING CONCEPTS

 Scheduling Concepts
= Queues
= Non-preemptive vs Preemptive
= |dling

e Scheduling Criteria

e Scheduling Algorithms

QUEUES

Ready Queue

timeout or yield

Wait Queue(s)

event event-wait

_

Create  Cre@te “-----steressesesssessssessssssssssssssessscosssssisieneinenenienennnnd
(batch) (interactive)

« Job Queue: batch processes awaiting admission

¢ Ready Queue: processes in main memory, ready and waiting to execute

» Wait Queue(s): set of processes waiting for an |0 device (or for other processes)
= Job scheduler selects processes to put onto the ready queue
= CPU scheduler selects process to execute next and allocates CPU
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PREEMPTIVE VS NON-PREEMPTIVE

OS needs to select a ready process and allocate it the CPU
When?

e ..arunning process blocks (running — blocked)
e ..aprocess terminates (running — exit)

If scheduling decision is only taken under these conditions, the scheduler is said to
be non-preemptive

e ..atimer expires (running — ready)
e ..a waiting process unblocks (blocked — ready)

Otherwise it is preemptive

NON-PREEMPTIVE

e Simple to implement:

= No timers, process gets the CPU for as long as desired
» Open to denial-of-service:

= Malicious or buggy process can refuse to yield

Typically includes an explicit yield system call or similar, plus implicit yields, e.g.,
performing 10, waiting

Examples: MS-DOS, Windows 3.11

PREEMPTIVE

« Solves denial-of-service:

= OS can simply preempt long-running process
« More complex to implement:

= Timer management, concurrency issues

Examples: Just about everything you can think of 3)

IDLING

We will usually assume that there's always something ready to run. But what if
there isn't?

This is quite an important question on modern machines where the common case is
>50% idle
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IDLING

Three options

1. Busy wait in scheduler, e.g., Windows 9x
e Quick response time
e Ugly, useless

IDLING

Three options

1. Busy wait in scheduler

2. Halt processor until interrupt arrives, e.g., modern OSs
 Saves power (and reduces heat!)
« Increases processor lifetime
» Might take too long to stop and start

IDLING

Three options

1. Busy wait in scheduler
2. Halt processor until interrupt arrives
3. Invent an idle process, always available to run
 Gives uniform structure
e Could run housekeeping
e Uses some memory
e Might slow interrupt response

In general there is a trade-off between responsiveness and usefulness. Consider the
important resources and the system complexity

SCHEDULING CRITERIA

e Scheduling Concepts
¢ Scheduling Criteria

= Utilisation

= Throughput

= Turnaround, Waiting, Response Times
¢ Scheduling Algorithms
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SCHEDULING CRITERIA

Typically one expects to have more than one option — more than one process is
runnable

On what basis should the CPU scheduler make its decision?

Many different metrics may be used, exhibiting different trade-offs and leading to
different operating regimes

CPU UTILISATION

Maximise the fraction of the time the CPU is actively being
used
Keep the (expensive?) machine as busy as possible

But may penalise processes that do a lot of 10 as they appear to result in the CPU
not being used

THROUGHPUT

Maximise the number of that that complete their execution
per time unit
Get useful work completed at the highest rate possible

But may penalise long-running processes as short-run processes will complete
sooner and so are preferred

TURNAROUND TIME

Minimise the amount of time to execute a particular process

Ensures every processes complete in shortest time possible

WAITING TIME

Minimise the amount of time a process has been waiting in
the ready queue

Ensures an interactive system remains as responsive as possible

But may penalise 10 heavy processes that spend a long time in the wait queue
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RESPONSE TIME

Minimise the amount of time it takes from when a request
was submitted until the first response is produced

Found in time-sharing systems. Ensures system remains as responsive to clients as

possible under load

But may penalise longer running sessions under heavy load

SCHEDULING ALGORITHMS

e Scheduling Concepts
¢ Scheduling Criteria
¢ Scheduling Algorithms
= First-Come First-Served
Shortest Job First
Shortest Response Time First
Predicting Burst Length
= Round Robin
Static vs Dynamic Priority

FIRST-COME FIRST-SERVED (FCFS)

Simplest possible scheduling algorithm, depending only on the order in which

processes arrive

E.g. given the following demand:

Process Burst Time

P 25
P, 4
Ps 7

EXAMPLE: FCFS

Consider the average waiting time under different arrival orders
P;,P,,P;3:

e Waiting time Py = 0,P, = 25,P3 =29

 Average waiting time: ?ﬁ‘&s =18
P3,P;,Py:

o Waitingtime Py = 11,P, =7,P3 =0
» Average waiting time: ﬁ =6

Arriving in reverse order is three times as good!

* The first case is poor due to the convoy effect: later processes are held up behind

a long-running first process
o FCFS is simple but not terribly robust to different arrival processes

Dr Richard Mortier

IA Operating Systems, 2015/16

29/93




SHORTEST JOB FIRST (SJF)

Intuition from FCFS leads us to shortest job first (SJF) scheduling

 Associate with each process the length of its next CPU burst
» Use these lengths to schedule the process with the shortest time

e Use, e.g., FCFS to break ties

EXAMPLE: SJF
Process Arrival Time Burst Time
P, 0 7
P, 2 4
P 4 1
Py 5 4

Waiting time for P; = 0, P, = 6, P3 = 3, P4 = 7. Average waiting time:
O+6+3+7) _ 4
== =

SIF is optimal with respect to average waiting time:

« |t minimises average waiting time for a given set of processes
¢ What might go wrong?

SHORTEST REMAINING-TIME FIRST (SRTF)

Simply a preemptive version of SIF: preempt the running process if a new process
arrives with a CPU burst length less than the remaining time of the current
executing process

EXAMPLE: SRTF

As before:

Process Arrival Time Burst Time

P, 0 7
P, 2 4
Ps 4 1
P, 5 4

Waiting time for Py = 9,P, = 1,P3 = 0,P4 =2

O+1+0+2) _ 5

Average waiting time: 7

Dr Richard Mortier

IA Operating Systems, 2015/16 30/93




EXAMPLE: SRTF PREDICTING BURST LENGTHS

Surely this is optimal in the face of new runnable processes arriving? Not e For both SJIF and SRTF require the next "burst length” for each process means we
necessarily — why? must estimate it

« Can be done by using the length of previous CPU bursts, using exponential

« Context switches are not free: many very short burst length processes may thrash averaging:

the CPU, preventing useful work being done
1. t, = actual length of n" CPU burst.
2. 7,41 = predicted value for next CPU burst.
3.Fora,0 < a < 1 define:

Tnt1 = Oy + (I -z,

» More fundamentally, we can't generally know what the future burst length is!

PREDICTING BURST LENGTHS ROUND ROBIN
¢ If we expand the formula we get: A preemptive scheduling scheme for time-sharing systems.
Tppt = aty + ...+ (I —aYatyj+ ... + (1 — )" g « Define a small fixed unit of time called a quantum (or time-slice), typically 10 —

100 milliseconds

where 7o is some constant » Process at the front of the ready queue is allocated the CPU for (up to) one

 Choose value of a according to our belief about the system, e.g., if we believe quantum

history irrelevant, choose & ~ 1 and then get 7,41 ~ 1, * When the time has elapsed, the process is preempted and appended to the ready
« In general an exponential averaging scheme is a good predictor if the variance is queue

small

 Since both a and (1 — «) are less than or equal to one, each successive term has
less weight than its predecessor

* NB. Need some consideration of load, else get (counter-intuitively) increased
priorities when increased load
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ROUND ROBIN: PROPERTIES

Round robin has some nice properties:

 Fair: given n processes in the ready queue and time quantum q, each process gets
1/n™ of the CPU

e Live: no process waits more than (n — 1)g time units before receiving a CPU
allocation

« Typically get higher average turnaround time than SRTF, but better average
response time

But tricky to choose the correct size quantum, g:

e ¢ too large becomes FCFS/FIFO
¢ g too small becomes context switch overhead too high

PRIORITY SCHEDULING

Associate an (integer) priority with each process, e.g.,

Prio Process type

0 system internal processes

interactive processes (staff)

1
2 interactive processes (students)
3

batch processes

Simplest form might be just system vs user tasks

PRIORITY SCHEDULING

e Then allocate CPU to the highest priority process: "highest priority" typically
means smallest integer
= Get preemptive and non-preemptive variants
= E.g., SIFis a priority scheduling algorithm where priority is the predicted next
CPU burst time

TIE-BREAKING

What do with ties?

e Round robin with time-slicing, allocating quantum to each process in turn
¢ Problem: biases towards CPU intensive jobs (Why?)

 Solution?
= Per-process quantum based on usage?
= Just ignore the problem?
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STARVATION

Urban legend about IBM 7074 at MIT: when shut down in 1973, low-priority processes
were found which had been submitted in 1967 and had not yet been run...

This is the biggest problem with static priority systems: a low priority process is not
guaranteed to run — ever!

DYNAMIC PRIORITY SCHEDULING

Prevent the starvation problem: use same scheduling algorithm, but allow priorities
to change over time

» Processes have a (static) base priority and a dynamic effective priority
= If process starved for k seconds, increment effective priority
= Once process runs, reset effective priority

EXAMPLE: COMPUTED PRIORITY

First used in Dijkstra's THE

Timeslots:...,t,t+ 1,... .
In each time slot ¢, measure the CPU usage of processj : i/
Priority for process j inslot# + 1:

Prot = F 0 phtt P

. j .
. m.@.,&t = W +»&
Penalises CPU bound but supports |0 bound

Once considered impractical but now such computation considered acceptable

SUMMARY

e Scheduling Concepts
= Queues
= Non-preemptive vs Preemptive
= Idling
¢ Scheduling Criteria
= Utilisation
= Throughput
= Turnaround, Waiting, Response Times
e Scheduling Algorithms
s First-Come First-Served
Shortest Job First
Shortest Response Time First
Predicting Burst Length
= Round Robin
Static vs Dynamic Priority
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[05] VIRTUAL ADDRESSING

OUTLINE

¢ Memory Management

= Concepts

= Relocation, Allocation, Protection, Sharing, Logical vs Physical Organisation
e The Address Binding Problem

= Relocation

= Logical vs Physical Addresses
 Allocation

= Scheduling

= Fragmentation

= Compaction

MEMORY MANAGEMENT

« Memory Management

= Concepts

= Relocation, Allocation, Protection, Sharing, Logical vs Physical Organisation
e The Address Binding Problem
e Allocation

CONCEPTS

In a multiprogramming system, have many processes in memory simultaneously

o Every process needs memory for:
= Instructions ("code” or "text")
= Static data (in program)
= Dynamic data (heap and stack)
« In addition, operating system itself needs memory for instructions and data
= Must share memory between OS and k processes
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1. RELOCATION

e Memory typically shared among processes, so programmer cannot know address
that process will occupy at runtime

e May want to swap processes into and out of memory to maximise CPU utilisation

« Silly to require a swapped-in process to always go to the same place in memory

» Processes incorporate addressing info (branches, pointers, etc.)

¢ OS must manage these references to make sure they are sane

e Thus need to translate logical to physical addresses

2. ALLOCATION

 This is similar to sharing below, but also related to relocation

« |l.e. OS may need to choose addresses where things are placed to make linking or
relocation easier

3. PROTECTION

¢ Protect one process from others

¢ May also want sophisticated RWX protection on small memory units

» A process should not modify its own code (yuck)

» Dynamically computed addresses (array subscripts) should be checked for sanity

4. SHARING

« Multiple processes executing same binary: keep only one copy

¢ Shipping data around between processes by passing shared data segment
references

» Operating on same data means sharing locks with other processes

5. LOGICAL ORGANISATION

¢ Most physical memory systems are linear address spaces from 0 to max

» Doesn't correspond with modular structure of programs: want segments

* Modules can contain (modifiable) data, or just code

o Useful if OS can deal with modules: can be written, compiled independently

« (an give different modules diff protection, and can be shared thus easy for user
to specify sharing model

6. PHYSICAL ORGANISATION

e Main memory: single linear address space, volatile, more expensive

e Secondary storage: cheap, non-volatile, can be arbitrarily structured

e One key OS function is to organise flow between main memory and the
secondary store (cache?)

¢ Programmer may not know beforehand how much space will be available

THE ADDRESS BINDING
PROBLEM

¢ Memory Management
¢ The Address Binding Problem

= Relocation

= Logical vs Physical Addresses
* Allocation
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THE ADDRESS BINDING PROBLEM

Consider the following simple program:

We can imagine that this would result in some assembly code which looks
something like:

#5, [Rx]
R1, [Rx]

R2, R1l, #3
R2, [Ry]

where the expression [ addr ] means the contents of the memory at address addr.
Then the address binding problem is: what values do we give Rx and Ry?

Arises because we don't know where in memory our program will be loaded when
we run it: e.g. if loaded at 0x1000, then x and y might be stored at 0x2000,
0x2004, but if loaded at 0x5000, then x and y might be at 0x6000, 0x6004

ADDRESS BINDING AND RELOCATION

Solution requires translation between program addresses and real addresses which
can be done:

o At compile time:
= Requires knowledge of absolute addresses, e.g. DOS . com files
¢ At load time:
= Find position in memory after loading, update code with correct addresses
= Must be done every time program is loaded
= Ok for embedded systems / boot-loaders
o At run-time:
= Get hardware to automatically translate between program and real addresses
= No changes at all required to program itself
= The most popular and flexible scheme, providing we have the requisite
hardware (MMU)

LOGICAL VS PHYSICAL ADDRESSES

Mapping of logical to physical addresses is done at run-time by Memory
Management Unit (MMU)

logical physical
address address

MMU ———
I

translation
mm:?‘—ﬁo 0S)

Memory

1. Relocation register holds the value of the base address owned by the process
2. Relocation register contents are added to each memory address before it is sent
to memory
3. e.g. DOS on 80x86 — 4 relocation registers, logical address is a tuple (s, 0)
* NB. Process never sees physical address — simply manipulates logical
addresses
4. OS has privilege to update relocation register

ALLOCATION

¢ Memory Management
e The Address Binding Problem
¢ Allocation

= Scheduling

= Fragmentation

= Compaction
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CONTIGUOUS ALLOCATION

How do we support multiple virtual processors in a single
address space? Where do we put processes in memory?

e OS typically must be in low memory due to location of interrupt vectors
 Easiest way is to statically divide memory into multiple fixed size partitions:
= Bottom partition contains OS, remainder each contain exactly one process
* When a process terminates its partition becomes available to new processes.
= e.g. 0S/360 MFT
» Need to protect OS and user processes from malicious programs:
= Use base and limit registers in MMU
= updAte values when a new processes is scheduled
= NB. Solving both relocation and protection problems at the same time!

STATIC MULTIPROGRAMMING

Partition memory when installing OS, and allocate pieces to different job queues
Associate jobs to a job queue according to size
Swap job back to disk when:
= Blocked on IO (assuming 10 is slower than the backing store)
= Time sliced: larger the job, larger the time slice
Run job from another queue while swapping jobs
= e.g. IBM 0S/360 MVT, ICL System 4
Problems: fragmentation, cannot grow partitions

DYNAMIC PARTITIONING

More flexibility if allow partition sizes to be dynamically chosen (e.g. 0S/360 MVT):

o OS keeps track of which areas of memory are available and which are occupied
= e.g. use one or more linked lists:
» For a new process, OS searches for a hole large enough to fit it:
= First fit: stop searching list as soon as big enough hole is found
= Best fit: search entire list to find "best” fitting hole
= Worst fit: counterintuitively allocate largest hole (again, search entire list)

1. first and best fit perform better statistically both in time and space utilisation —
typically for IV allocated blocks have another 0.5N in wasted space using first fit

2. Which is better depends on pattern of process swapping

3. Can use buddy system to make allocation faster

4. When process terminates its memory returns onto the free list, coalescing holes
where appropriate

SCHEDULING EXAMPLE

Consider a machine with total of 2560kB memory, and an OS requiring 400kB
¢ The following jobs are in the queue:

Process Memory Time

P 600kB 10

P, 1000kB 5

P 300kB 20

Py 700kB 8

Ps 500kB 15
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EXTERNAL FRAGMENTATION

ﬂ Dynamic partitioning algorithms suffer from

H A external fragmentation: as processes are
m (e | —E loaded they leave little fragments which may
not be used. Can eventually block due to
P2 -
ﬂ E —ﬂ insufficient memory to swap in
i i ] P | |21 External fragmentation exists when the total
os os os os os os . . . .
available memory is sufficient for a request,
but is unusable because it is split into many
holes

Can also have problems with tiny holes when keeping track of hole costs more
memory than hole! Requires periodic compaction

COMPACTION

« Choosing optimal strategy quite tricky. Note that:
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1900K
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300K

os
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= Require run-time relocation
= Can be done more efficiently when process is moved into memory from a

swap

= Some machines used to have hardware support (e.g., CDC Cyber)

 Also get fragmentation in backing store, but in this case compaction not really

viable

SUMMARY

¢ Memory Management

= Concepts

= Relocation, Allocation, Protection, Sharing, Logical vs Physical Organisation
e The Address Binding Problem

= Relocation

= Logical vs Physical Addresses
e Allocation

= Scheduling

= Fragmentation

= Compaction
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[06] PAGING

OUTLINE

e Paged Virtual Memory
= Concepts
= Pros and Cons
= Page Tables
= Translation Lookaside Buffer (TLB)
= Protection & Sharing
e Virtual Memory
= Demand Paging Details
= Page Replacement
= Page Replacement Algorithms
¢ Performance
= Frame Allocation
= Thrashing & Working Set
= Pre-paging
= Page Sizes

PAGED VIRTUAL MEMORY

 Paged Virtual Memory
= Concepts
= Pros and Cons
= Page Tables
= Translation Lookaside Buffer (TLB)
= Protection & Sharing
e Virtual Memory
e Performance

PAGED VIRTUAL MEMORY

Another solution is to allow a process to exist in non-contiguous memory, i.e.,

logical address N»QW@ Table

[(2lo

Pz _

7
G
G
g
G
;7
G
G
G
G
G
G
G

physical
address

7
’
9
CPU ¥
’
’
’
’
’
’

S

177777777272777777)

Divide physical memory into frames, small fixed-size blocks

Divide logical memory into pages, blocks of the same size (typically 4kB)
Each CPU-generated address is a page number p with page offset o
Page table contains associated frame number f

Usually have Ipl > If1 so also record whether mapping valid
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PAGING PROS AND CONS

m-n m

p d

page number page offset

« Hardware support required — frequently defines the page size, typically a power
of 2 (making address fiddling easy) ranging from 512B to 8192B (0.5kB — 8kB)

« Logical address space of 2m and page size 2n gives p = m — n bitsand o = m

bits

» Note that paging is itself a form of dynamic relocation: simply change page table
to reflect movement of page in memory. This is similar to using a set of base +
limit registers for each page in memory

PAGING PROS AND CONS

Virtual Memory
Page 0

Physical Memory

Page 1
Page 2

Page 3

Page 4

Page n-1

« Memory allocation becomes easier but OS must maintain a page table per
process

= No external fragmentation (in physical memory at least), but get internal
fragmentation: a process may not use all of final page

» Indicates use of small page sizes — but there's a significant per-page
overhead: the Page Table Entries (PTEs) themselves, plus that disk IO is more
efficient with larger pages

= Typically 2 — 4kB nowadays (memory is cheaper)

PAGING PROS AND CONS

¢ Clear separation between user (process) and system (OS) view of memory usage
= Process sees single logical address space; OS does the hard work
= Process cannot address memory they don't own — cannot reference a page it
doesn't have access to
= OS can map system resources into user address space, e.g., 10 buffer
= OS must keep track of free memory; typically in frame table
« Adds overhead to context switching
= Per process page table must be mapped into hardware on context switch
= The page table itself may be large and extend into physical memory

PAGE TABLES

Page Tables (PTs) rely on hardware support:

o Simplest case: set of dedicated relocation registers
= One register per page, OS loads registers on context switch
= E.g., PDP-11 16 bit address, 8kB pages thus 8 PT registers
= Each memory reference goes through these so they must be fast
» Ok for small PTs but what if we have many pages (typically QCOQVV
= Solution: Keep PT in memory, then just one MMU register needed, the Page
Table Base Register (PTBR)
= OS switches this when switching process
¢ Problem: PTs might still be very big
= Keep a PT Length Register (PTLR) to indicate size of PT
= Or use a more complex structure (see later)
¢ Problem: need to refer to memory twice for every "actual” memory reference
= Solution: use a Translation Lookaside Buffer (TLB)
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TLB OPERATION

When memory is referenced, present TLB with logical memory address

 If PTE is present, get an immediate result
e Otherwise make memory reference to PTs, and update the TLB
o Latter case is typically 10% slower than direct memory reference

TLBISSUES

As with any cache, what to do when it's full, how are entries shared?

« If full, discard entries typically Least Recently Used (LRU) policy
» Context switch requires TLB flush to prevent next process using wrong PTEs —
Mitigate cost through process tags (how?)

Performance is measured in terms of hit ratio, proportion of time a PTE is found in

m,. TLB. Example:
TLB — m
B M_ = e Assume TLB search time of 20ns, memory access time of 100ns, hit ratio of 80%
il T [F1 o] * Assume one memory reference required for lookup, what is the effective memory
P physical address access Hmamv
age Table
= 0.8x120+0.2x220=140ns
P * Now increase hit ratio to 98% — what is the new effective access time?
s — = 0.98 x 120 +0.02 x 220 =122 ns — just a 13% improvement
= (Intel 80486 had 32 registers and claimed a 98% hit ratio)
MULTILEVEL PAGE TABLES EXAMPLE: VAX

Most modern systems can support very large

(2%2,2%) address spaces, leading to very e [T e T G
large PTs which we don't really want to keep r

all of in main memory

L1 Page Table

Pl |
M L2 Page Table
b ()

n| L2 Address

Solution is to split the PT into several sub- H
parts, e.g., two, and then page the page table: 7| Leaf PTE =%

« Divide the page number into two parts
e.g., 20 bit page number, 12 bit page offset

e Then divide the page number into outer and inner parts of 10 bits each

A 32 bit architecture with 512 byte pages:

Logical address space divided into 4 sections of 230 bytes

Top 2 address bits designate section

Next 21 bits designate page within section

Final 9 bits designate page offset

For a VAX with 100 pages, one level PT would be 4MB; with sectioning, it's IMB

For 64 bit architectures, two-level paging is not enough: add further levels.

 For 4kB pages need 22 entries in PT using 1 level PT
e For 2 level PT with 32 bit outer PT, we'd still need 16GB for the outer PT

Even some 32 bit machines have > 2 levels: SPARC (32 bit) has 3 level paging
scheme; 68030 has 4 level paging
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EXAMPLE: X86

Virtual Address

[11 ] 12 Joffset
Virtual Address
Page Directory (Level 1) [ L1 [ 12 Joffset
l——F— 20 bits —— Page Table (Level 2)
P[z[A[c[W[U[R] L0
= _Hmz_m_o_n_u_ams - G[z[D[A[c[W[U[R[V]
S HEEEEEEEE

Page size is 4kB or 4MB. First lookup to the page directory, indexed using top 10
bits. The page directory address is stored in an internal processor register (cr 3).
The lookup results (usually) in the address of a page table. Next 10 bits index the
page table, retrieving the page frame address. Finally, add in the low 12 bits as the
page offset. Note that the page directory and page tables are exactly one page each
themselves (not by accident)

PROTECTION ISSUES

Associate protection bits with each page, kept in page tables (and TLB), e.g. one bit
for read, one for write, one for execute (RWX). Might also distinguish whether may
only be accessed when executing in kernel mode, e.g.,

Frame Number _N_w_s_x_<_

As the address goes through the page hardware, can check protection bits —
though note this only gives page granularity protection, not byte granularity

Any attempt to violate protection causes hardware trap to operating system code to
handle. The entry in the TLB will have a valid/invalid bit indicating whether the
page is mapped into the process address space. If invalid, trap to the OS handler to
map the page

Can do lots of interesting things here, particularly with regard to sharing,
virtualization, ...

SHARED PAGES

Another advantage of paged memory is code/data sharing, for example:

« Binaries: editor, compiler etc.
e Libraries: shared objects, DLLs

So how does this work?

¢ Implemented as two logical addresses which map to one physical address
« If code is re-entrant (i.e. stateless, non-self modifying) it can be easily shared
between users
« Otherwise can use copy-on-write technique:
= Mark page as read-only in all processes
= |f a process tries to write to page, will trap to OS fault handler
= Can then allocate new frame, copy data, and create new page table mapping
¢ (May use this for lazy data sharing too)

Requires additional book-keeping in OS, but worth it, e.g., many hundreds of MB
shared code on this laptop. (Though nowadays, see unikernels!)

VIRTUAL MEMORY

¢ Paged Virtual Memory
e Virtual Memory

= Demand Paging Details

= Page Replacement

= Page Replacement Algorithms
e Performance
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VIRTUAL MEMORY

Virtual addressing allows us to introduce the idea of virtual memory

« Already have valid or invalid page translations; introduce "non-resident
designation and put such pages on a non-volatile backing store
» Processes access non-resident memory just as if it were "the real thing"

Virtual Memory (VM) has several benefits:

« Portability: programs work regardless of how much actual memory present;
programs can be larger than physical memory

« Convenience: programmer can use e.g. large sparse data structures with
impunity; less of the program needs to be in memory at once, thus potentially
more efficient multi-programming, less 10 loading/swapping program into
memory

« Efficiency: no need to waste (real) memory on code or data which isn't used (e.g.,
error handling)

VM IMPLEMENTATION

Typically implemented via demand paging:

e Programs (executables) reside on disk

» To execute a process we load pages in on demand; i.e. as and when they are
referenced

» Also get demand segmentation, but rare (eg., Burroughs, 0S/2) as it's more
difficult (segment replacement is much harder due to segments having variable
size)

DEMAND PAGING DETAILS

When loading a new process for execution:

« Create its address space (page tables, etc)
e Mark PTEs as either invalid or non-resident
o Add PCB to scheduler

Then whenever we receive a page fault, check PTE:

e If due to invalid reference, kill process

« Otherwise due to non-resident page, so "page in" the desired page:

Find a free frame in memory

Initiate disk 10 to read in the desired page

When 10 is finished modify the PTE for this page to show that it is now valid
Restart the process at the faulting instruction

DEMAND PAGING: ISSUES

Above process makes the fault invisible to the process, but:

* Requires care to save process state correctly on fault

e Can be particularly awkward on a CPU with pipelined decode as we need to wind
back (e.g., MIPS, Alpha)

¢ Even worse on on CISC CPU where single instruction can move lots of data,
possibly across pages — we can't restart the instruction so rely on help from
microcode (e.g., to test address before writing). Can possibly use temporary
registers to store moved data

« Similar difficulties from auto-increment/auto-decrement instructions, e.g., ARM

« (Can even have instructions and data spanning pages, so multiple faults per
instruction; though locality of reference tends to make this infrequent

Scheme described above is pure demand paging: don't bring in pages until needed
so get lots of page faults and IO when process begins; hence many real systems
explicitly load some core parts of the process first
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PAGE REPLACEMENT

To page in from disk, we need a free frame of physical memory to hold the data
we're reading in — but in reality, the size of physical memory is limited so either:

« Discard unused pages if total demand for pages exceeds physical memory size
« Or swap out an entire process to free some frames

Modified algorithm: on a page fault we:

1. Locate the desired replacement page on disk

2. Select a free frame for the incoming page:
1. If there is a free frame use it, otherwise select a victim page to free
2. Then write the victim page back to disk
3. Finally mark it as invalid in its process page tables

3. Read desired page into the now free frame

4. Restart the faulting process

...thus, having no frames free effectively doubles the page fault service time

PAGE REPLACEMENT

Can reduce overhead by adding a "dirty" bit to PTEs

» Can allow us to omit step (2.2) above by only writing out page was modified, or if
page was read-only (e.g., code)

How do we choose our victim page?

« A key factor in an efficient VM system: evicting a page that we'll need in a few
instructions time can get us into a really bad condition

+ We want to ensure that we get few page faults overall, and that any we do get
are relatively quick to satisfy

We will now look at a few page replacement algorithms:

e All aim to minimise page fault rate
« Candidate algorithms are evaluated by (trace driven) simulation using reference
strings

PAGE REPLACEMENT ALGORITHMS
FIRST-IN FIRST-OUT (FIFO)

Keep a queue of pages, discard from head. Performance is hard to predict as we've
no idea whether replaced page will be used again or not: eviction is independent of
page use frequency. In general this is very simple but pretty bad:

« (Can actually end up discarding a page currently in use, causing an immediate
fault and next in queue to be replaced — really slows system down

 Possible to have more faults with increasing number of frames (Belady's
anomaly)

OPTIMAL ALGORITHM (OPT)

Replace the page which will not be used again for longest period of time. Can only
be done with an oracle or in hindsight, but serves as a good baseline for other
algorithms

LEAST RECENTLY USED (LRU)

Replace the page which has not been used for the longest amount of time.
Equivalent to OPT with time running backwards. Assumes that the past is a good
predictor of the future. Can still end up replacing pages that are about to be used

Generally considered quite a good replacement algorithm, though may require
substantial hardware assistance

But! How do we determine the LRU ordering?
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IMPLEMENTING LRU: COUNTERS

» Give each PTE a time-of-use field and give the CPU a logical clock (counter)
« Whenever a page is referenced, its PTE is updated to clock value
e Replace page with smallest time value

Problems:

e Requires a search to find minimum counter value
« Adds a write to memory (PTE) on every memory reference
e Must handle clock overflow

Impractical on a standard processor

IMPLEMENTING LRU: PAGE STACK

« Maintain a stack of pages (doubly linked list) with most-recently used (MRU)
page on top
 Discard from bottom of stack

Problem:

¢ Requires changing (up to) 6 pointers per [new] reference (max 6 pointers)
« This is very slow without extensive hardware support

Also impractical on a standard processor

APPROXIMATING LRU

Many systems have a reference bit in the PTE, initially zeroed by OS, and then set
by hardware whenever the page is touched. After time has passed, consider those

pages with the bit set to be active and implement Not Recently Used (NRU)
replacement:

« Periodically (e.g. 20ms) clear all reference bits
* When choosing a victim to evict, prefer pages with clear reference bits
« If also have a modified or dirty bit in the PTE, can use that too

Referenced? Dirty? Comment

no no best type of page to replace
no yes next best (requires writeback)
yes no probably code in use

yes yes bad choice for replacement

IMPROVING THE APPROXIMATION

Instead of just a single bit, the OS:

¢ Maintains an 8-bit value per page, initialised to zero
« Periodically (e.g. 20ms) shifts reference bit onto high order bit of the byte, and
clear reference bit

Then select lowest value page (or one of) to replace

« Keeps the history for the last 8 clock sweeps
« Interpreting bytes as u_ints, then LRU page is min(additional_bits)
¢ May not be unique, but gives a candidate set
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FURTHER IMPROVMENT: SECOND-CHANCE FIFO

plm mUQg mUQg

0 = = .8 & 0
B N O | 10 B —0O
0 O o O m 0
Og® Ogl Og®

« Store pages in queue as per FIFO

» Before discarding head, check reference bit

« If reference bit is O, discard else reset reference bit, and give page a second
chance (add it to tail of queue)

Guaranteed to terminate after at most one cycle, with the worst case having the
second chance devolve into a FIFO if all pages are referenced. A page given a
second chance is the last to be replaced

IMPLEMENTING SECOND-CHANCE FIFO

Often implemented with a circular queue and a current pointer; in this case usually
called clock

If no hardware is provided, reference bit can emulate:

To clear "reference bit", mark page no access

If referenced then trap, update PTE, and resume
To check if referenced, check permissions

Can use similar scheme to emulate modified bit

OTHER REPLACEMENT SCHEMES

Counting Algorithms: keep a count of the number of references to each page

¢ Least Frequently Used (LFU): replace page with smallest count
= Takes no time information into account
= Page can stick in memory from initialisation
= Need to periodically decrement counts
« Most Frequently Used (MFU): replace highest count page
= Low count indicates recently brought in

PAGE BUFFERING ALGORITHMS

¢ Keep a minimum number of victims in a free pool
« New page read in before writing out victim, allowing quicker restart of process
o Alternative: if disk idle, write modified pages out and reset dirty bit

= Improves chance of replacing without having to write dirty page

(Pseudo) MRU: Consider accessing e.g. large array.

« The page to replace is one application has just finished with, i.e. most recently
used

e Track page faults and look for sequences

« Discard the kth in victim sequence

Application-specific: stop trying to second-guess what's going on and provide hook
for application to suggest replacement, but must be careful with denial of service
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PERFORMANCE

e Paged Virtual Memory
e Virtual Memory
¢ Performance
= Frame Allocation
= Thrashing & Working Set
= Pre-paging
= Page Sizes

PERFORMANCE COMPARISON

This plot shows page-fault

rate against number of s
physical frames for a
pseudo-local reference
string (note offset x origin).
We want to minimise area
under curve. FIFO could
exhibit Belady's Anomaly
(but doesn't here). Can see
that getting frame
allocation right has major
impact — much more than 0
which algorithm you use!
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FRAME ALLOCATION

A certain fraction of physical memory is reserved per-process and for core OS code
and data. Need an allocation policy to determine how to distribute the remaining
frames. Objectives:

« Fairness (or proportional fairness)?

= E.g. divide m frames between n processes as m/n, remainder in free pool

= E.g. divide frames in proportion to size of process (i.e. number of pages used)
e Minimize system-wide page-fault rate?

= E.g. allocate all memory to few processes
» Maximize level of multiprogramming?

= E.g. allocate min memory to many processes

Could also allocate taking process priorities into account, since high-priority
processes are supposed to run more readily. Could even care which frames we give
to which process ("page colouring”)

FRAME ALLOCATION: GLOBAL SCHEMES

Most page replacement schemes are global: all pages considered for replacement

 Allocation policy implicitly enforced during page-in
« Allocation succeeds iff policy agrees
 Free frames often in use so steal them!

For example, on a system with 64 frames and 5 processes:

e |f using fair share, each processes will have 12 frames, with four left over (maybe)

* When a process dies, when the next faults it will succeed in allocating a frame

e Eventually all will be allocated

« If a new process arrives, need to steal some pages back from the existing
allocations
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FRAME ALLOCATION: COMPARISON TO LOCAL

Also get local page replacement schemes: victim always chosen from within

process

In global schemes the process cannot control its own page fault rate, so
performance may depend entirely on what other processes page in/out

In local schemes, performance depends only on process behaviour, but this can
hinder progress by not making available less/unused pages of memory

Global are optimal for throughput and are the most common

THE RISK OF THRASHING

More processes entering the system
causes the frames-per-process allocated
to reduce. Eventually we hit a wall: E
processes end up stealing frames from :
each other, but then need them back so
fault. Ultimately the number of runnable
processes plunges

CPU utilisation

A process can N.NQ\:\:NQN&\ run with Degree of Multiprogramming
minimum-free frames available but will

have a very high page fault rate. If we're

very unlucky, OS monitors CPU utilisation and increases level of multiprogramming
if utilisation is too low: machine dies

Avoid thrashing by giving processes as many frames as they "need" and, if we can't,
we must reduce the MPL — a better page-replacement algorithm will not help

LOCALITY OF REFERENCE

ssaIppe ST

0xc0000
0xb0000
0xa0000
0x90000
0x80000
0x70000
0x60000
0x50000
0x40000
0x30000
0x20000
0x10000

Kernel Init Parse Optimise

\

image

T EHEA

—~—

’
#

A

._._sﬂ IRQs connect

daemon

Output

1
10000

L . P
20000 30000 40000 50000 60000 70000

Miss number

1/0 Buffers

User data/bss

U
VM workspace
Kemel data/bss
Kemel code

In a short time interval, the locations referenced by a process tend to be grouped
into a few regions in its address space:

« Procedure being executed

e Sub-procedures
e Data access
o Stack variables

AVOIDING THRASHING

We can use the locality of reference principle to help determine how many frames a
process needs:

 Define the Working Set (WS) (Denning, 1967)

Set of pages that a process needs in store at "the same time" to make any progress

 Varies between processes and during execution
» Assume process moves through phases

¢ In each phase, get (spatial) locality of reference
¢ From time to time get phase shift
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CALCULATING WORKING SET

Then OS can try to prevent thrashing by maintaining sufficient pages for current
phase:

« Sample page reference bits every, e.g., 10ms

« Define window size A of most recent page references

 If a pageis "in use”, say it's in the working set

e Gives an approximation to locality of program

Given the size of the working set for each process WSS;, sum working set sizes
to get total demand D

e If D > m we are in danger of thrashing — suspend a process

This optimises CPU util but has the need to compute WSS, (moving window across
stream). Can approximate with periodic timer and some page reference script. After
some number of intervals (i.e., of bits of state) consider pages with count < 0 to be
in WS. In general, a working set can be used as a scheme to determine allocation
for each process

PRE-PAGING

Pure demand paging causes a large number of PF when process starts

When process is started can pre-page by adding its frames to free list

Can remember the WS for a process and pre-page the required frames when
process is resumed (e.g. after suspension)

Increases |0 cost: How do we select a page size (given no hardware constraints)?

PAGE SIZES

» Trade-off the size of the PT and the degree of fragmentation as a result

e Typical values are 512B to 16kB — but should be reduce the numbers of queries,
or ensure that the window is covered

« Larger page size means fewer page faults

= Historical trend towards larger page sizes
= Eg., 386:4kB, 68030: 256B to 32kB

So, a page of 1kB, 56ms for 2 pages of 512B but smaller page allows us to watch
locality more accurately. Page faults remain costly because CPU and memory much
much faster than disk

SUMMARY

« Paged Virtual Memory
= Concepts
= Pros and Cons
= Page Tables
= Translation Lookaside Buffer (TLB)
= Protection & Sharing
e Virtual Memory
= Demand Paging Details
= Page Replacement
= Page Replacement Algorithms
» Performance
= Frame Allocation
= Thrashing & Working Set
= Pre-paging
= Page Sizes
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[07] SEGMENTATION

OUTLINE

* Segmentation

= An Alternative to Paging
Implementing Segments

= Segment Table

= Lookup Algorithm
Protection and Sharing

= Sharing Subtleties

= External Fragmentation
Segmentation vs Paging

= Comparison

= Combination
Summary
Extras

= Dynamic Linking & Loading

SEGMENTATION

Segmentation

= An Alternative to Paging
¢ Implementing Segments
 Protection and Sharing
e Segmentation vs Paging
e Summary
e Extras

AN ALTERNATIVE TO PAGING

View memory as a set of
segments of no particular size,
with no particular ordering

N
N
N
N
N
N
N
N
N
N
N
N

This corresponds to typical
modular approaches taken to
program development

AN

The length of a segment
depends on the complexity of
the function (e.g., sqrt)

Relocation Register

address 7 yes

address fault
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WHAT ISA SEGMENT?

Segmentation supports the user-view of memory that the logical address space
becomes a collection of (typically disjoint) segments

Segments have a name (or a number) and a length. Addresses specify segment, and
offset within segment

To access memory, user program specifies segment + offset, and the compiler (or, as
in MULTICS, the OS) translates, in contrast to paging where the user is unaware of

IMPLEMENTING SEGMENTS

Segmentation
Implementing Segments
= Segment Table
= Lookup Algorithm
Protection and Sharing
Segmentation vs Paging

the memory structure and everything is managed invisibly y WcBBmQ
o Extras
With paging, the user is unaware of memory structure — everything is managed
invisibly
IMPLEMENTING SEGMENTS IMPLEMENTING SEGMENTS

Logical addresses are pairs, (segment, of fset)

For example, the compiler might construct distinct segments for global variables,
procedure call stack, code for each procedure/function, local variables for each
procedure/function

Finally the loader takes each segment and maps it to a physical segment number

Segment Access Base Size Others!

Maintain a Segment Table for each process:

ST Base Register (STBR)

diferent programs will diverge widely

ST logically accessed on each memory reference, so speed is critical

If there are too many segments then the table is kept in memory, pointed to by
Also have an ST Length Register (STLR) since the number of segments used by

ST is part of the process context and hence is changed on each process switch
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IMPLEMENTING SEGMENTS: ALGORITHM PROTECTION AND SHARING

1. Program presents address (s, d).
2. If s > STLR then give up * Segmentation
3. Obtain table entry at reference s+STBR, a tuple of form (by, ;) ¢ Implementing Segments
4.1f0 < d < I then this is a valid address at location (b;, d), else fault * Protection and Sharing
= Sharing Subtleties
 The two operations by, d and 0 < d < [ can be done simultaneously to save = External Fragmentation
time » Segmentation vs Paging
« Still requires 2 memory references per lookup though, so care needed e Summary
e E.g, Use a set of associative registers to hold most recently used ST entries » Extras
« Similar performance gains to the TLB description earlier
PROTECTION SHARING
Segmentation's big advantage is to provide protection between components Segmentation also facilitates sharing of code/data:

Each process has its own STBR/STLR
Sharing is enabled when two processes have entries for the same physical

That protection is provided per segment; i.e. it corresponds to the logical view

Protection bits associated with each ST entry checked in usual way, e.g., instruction

. . . locations
segments should not be self-modifying, so are protected against writes « Sharing occurs at segment level, with each segment having own protection bits
Could go further — e.g., place every array in its own segment so that array limits » For data segments can use copy-on-write as per paged case

can be checked by the hardware Can share only parts of programs, e.g., C library but there are subtleties
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SHARING: SUBTLETIES SHARING SEGMENTS

e For example, jumps within shared code Per-process Physical Memory
ope ey . Sey t
= Jump specified as a condition + transfer address, i.e., (segment, of fset) Toples System
. . gmen
= Segment is (of course) this one N Table A

= Thus all programs sharing this segment must use the same number to refer to
it, else confusion will result

= As the number of users sharing a segment grows, so does difficulty of finding B Shared B
a common shared segment number

= Thus, specify branches as PC-relative or relative to a register containing the
current segment number [DANGEROUS]

= (Read only segments containing no pointers may be shared with different seg

[SAFE]

numbers) » Wasteful (and dangerous) to store common information on shared segment in
each process segment table

» Assign each segment a unique System Segment Number (SSN)

* Process Segment Table simply maps from a Process Segment Number (PSN) to
SSN

EXTERNAL FRAGMENTATION RETURNS SEGMENTATION VS PAGING

Long term scheduler must find spots in memory for all segments of a program.
Problem is that segments are variable size — thus, we must handle fragmentation

Segmentation

Implementing Segments

Protection and Sharing

Segmentation vs Paging
= Comparison

1. Usually resolved with best/first fit algorithm
2. External frag may cause process to have to wait for sufficient space
3. Compaction can be used in cases where a process would be delayed

Tradeoff between compaction/delay depends on average segment size » Combination
Summary

Extras

« Each process has just one segment reduces to variable sized partitions

¢ Each byte has its own segment separately relocated quadruples memory use!

 Fixed size small segments is equivalent to paging!

« Generally, with small average segment sizes, external fragmentation is small —
more likely to make things fit with lots of small ones (box packing)
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SEGMENTATION VERSUS PAGING

 Protection, Sharing, Demand etc are all per segment or page, depending on
scheme
« For protection and sharing, easier to have it per logical entity, i.e., per segment
 For allocation and demand access (and, in fact, certain types of sharing such as
COW), we prefer paging because:
= Allocation is easier
= Cost of sharing/demand loading is minimised

logical view allocation

segmentation good bad

paging bad good

COMBINING SEGMENTATION AND PAGING

1. Paged segments, used in Multics, 0S/2
« Divide each segment s; into k = [(;/2")] pages, where [; is the limit (length)
of the segment
 Provision one page table per segment
« Unfortunately: high hardware cost and complexity; not very portable
2. Software segments, used in most modern OSs
« Consider pages [m, . .., m + [] to be a segment
¢ OS must ensure protection and sharing kept consistent over region
« Unfortunately, leads to a loss of granularity
* However, it is relatively simple and portable

Arguably, main reason hardware segments lost is portability: you can do software
segments with just paging hardware, but cannot (easily) do software paging with
segmentation hardware

SUMMARY

Segmentation
Implementing Segments
¢ Protection and Sharing

» Segmentation vs Paging
e Summary

e Extras

SUMMARY: VIRTUAL ADDRESSING

« Direct access to physical memory is not great as have to handle:
= Contiguous allocation: need a large lump, end up with external fragmentation
= Address binding: handling absolute addressing
= Portability: how much memory does a "standard” machine have?
» Avoid problems by separating concepts of virtual (logical) and physical addresses
(Atlas computer, 1962)
* Needham's comment "every problem in computer science can be solved by an extra
level of indirection”
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SUMMARY: VIRTUAL TO PHYSICAL ADDRESS MAPPING

logical physical
address address

CPU MMU —
!

translation
mmin‘_;o 0s)

Memory

* Runtime mapping of logical to physical addresses handled by the MMU. Make
mapping per-process, then:
= Allocation problem split:
o Virtual address allocation easy
o Allocate physical memory 'behind the scenes’
= Address binding solved:
o Bind to logical addresses at compile-time
o Bind to real addresses at load time/run time
« Modern operating systems use paging hardware and fake out segments in
software

SUMMARY: IMPLEMENTATION CONSIDERATIONS

Hardware support
= Simple base reg enough for partitioning
= Segmentation and paging need large tables
Performance
= Complex algorithms need more lookups per reference plus hardware support
= Simple schemes preferred eg., simple addition to base
Fragmentation: internal/external from fixed/variable size allocation units
Relocation: solves external fragmentation, at high cost
= Logical addresses must be computed dynamically, doesn't work with load
time relocation
Swapping: can be added to any algorithm, allowing more processes to access
main memory
Sharing: increases multiprogramming but requires paging or segmentation
Protection: always useful, necessary to share code/data, needs a couple of bits

EXTRAS

Segmentation

Implementing Segments

¢ Protection and Sharing

» Segmentation vs Paging

e Summary

 Extras

= Dynamic Linking & Loading

DYNAMIC LINKING

Relatively new appearance in OS (early 80's). Uses shared objects/libraries (Unix), or
dynamically linked libraries (DLLs; Windows). Enables a compiled binary to invoke, at
runtime, routines which are dynamically linked:

If a routine is invoked which is part of the dynamically linked code, this will be
implemented as a call into a set of stubs

Stubs check if routine has been loaded

If not, linker loads routine (if necessary) and replaces stub code by routing

If sharing a library, the address binding problem must also be solved, requiring
OS support: in the system, only the OS knows which libraries are being shared
among which processes

Shared libs must be stateless or concurrency safe or copy on write

Results in smaller binaries (on-disk and in-memory) and increase flexibility (fix a
bug without relinking all binaries)
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DYNAMIC LOADING

e At runtime a routine is loaded when first invoked

e The dynamic loader performs relocation on the fly

e [t is the responsibility of the user to implement loading
e OS may provide library support to assist user

SUMMARY

Segmentation

= An Alternative to Paging
Implementing Segments

= Segment Table

= Lookup Algorithm
Protection and Sharing

= Sharing Subtleties

= External Fragmentation
Segmentation vs Paging

= Comparison

= Combination
Summary
Extras

= Dynamic Linking & Loading
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[08] 10 SUBSYSTEM

OUTLINE

¢ Input/Output (10)
= Hardware
= Device Classes
= OS Interfaces
e Performing 10
= Polled Mode
= Interrupt Driven
= Blocking vs Non-blocking
¢ Handling 10
= Buffering & Strategies
= Other Issues
= Kernel Data Structures
= Performance

INPUT/OUTPUT

« Input/Output (I0)
= Hardware
= Device Classes
= OS Interfaces

e Performing 10

e Handling 10

10 HARDWARE

Very wide range of devices that interact with the computer via input/output (I0):

¢ Human readable: graphical displays, keyboard, mouse, printers
e Machine readable: disks, tapes, CD, sensors
« Communications: modems, network interfaces, radios

All differ significantly from one another with regard to:

Data rate: orders of magnitude different between keyboard and network
Control complexity: printers much simpler than disks

Transfer unit and direction: blocks vs characters vs frame stores

Data representation

Error handling
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10 SUBSYSTEM

Results in 10 subsystem generally being the "messiest” part of the OS

¢ So much variety of devices
e So many applications
e So many dimensions of variation:
= Character-stream or block
= Sequential or random-access
Synchronous or asynchronous
Shareable or dedicated
Speed of operation
= Read-write, read-only, or write-only

Thus, completely homogenising device API is not possible so OS generally splits
devices into four classes

DEVICE CLASSES

Block devices (e.g. disk drives, CD)

e Commands include read, write, seek
¢ Can have raw access or via (e.g.) filesystem (“cooked") or memory-mapped

Character devices (e.g. keyboards, mice, serial):

e Commands include get, put
 Layer libraries on top for line editing, etc

Network Devices

« Vary enough from block and character devices to get their own interface
e Unix and Windows NT use the Berkeley Socket interface

Miscellaneous

o Current time, elapsed time, timers, clocks
¢ (Unix) ioctl covers other odd aspects of 10

OS INTERFACES

Programs access virtual devices:
Terminal streams not terminals,
windows not frame buffer, event
streams not raw mouse, files not disk
blocks, print spooler not parallel port
transport protocols not raw Ethernet
frames

- Virtual Device Layer

i C VOF

Device Driver Layer

Device Layer

OS handles the processor-device interface: |0 instructions vs memory mapped
devices; IO hardware type (e.g. 10s of serial chips); Polled vs interrupt driven; CPU
interrupt mechanism

Virtual devices then implemented:

¢ In kernel, e.g. files, terminal devices
¢ In daemons, e.g. spooler, windowing
e In libraries, e.g. terminal screen control, sockets

PERFORMING IO

e Input/Output (10)
¢ Performing 10

= Polled Mode

= Interrupt Driven

= Blocking vs Non-blocking
¢ Handling 10
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POLLED MODE

Consider a simple device with three registers:

error (R/0)

TRNN status, data and command. Host can read
status | e = and write these via bus. Then polled mode
I operation works as follows:

data (r/w)

|~ read (w/0)

O e w0

command

H repeatedly reads device-busy until clear

e Hsets e.g. write bit in command register, and puts data into data register
¢ H sets command-ready bit in status register

D sees command-ready and sets device-busy

o D performs write operation

D clears command-ready & then clears device-busy

What's the problem here?

INTERRUPT DRIVEN

Rather than polling, processors provide an interrupt mechanism to handle
mismatch between CPU and device speeds:

At end of each instruction, processor checks interrupt line(s) for pending interrupt
= Need not be precise (that is, occur at definite point in instruction stream)
If line is asserted then processor:
= Saves program counter & processor status
= Changes processor mode
= Jumps to a well-known address (or contents of a well-known address)
Once interrupt-handling routine finishes, can use e.g. rti instruction to resume
More complex processors may provide:
= Multiple priority levels of interrupt
= Hardware vectoring of interrupts
= Mode dependent registers

HANDLING INTERRUPTS

Split the implementation into two parts:

¢ At the bottom, the interrupt handler
At the top, NV interrupt service routines (ISR; per-device)

Processor-dependent interrupt handler may:

» Save more registers and establish a language environment
e Demultiplex interrupt in software and invoke relevant ISR

Device- (not processor-) dependent interrupt service routine will:

e For programmed IO device: transfer data and clear interrupt
o For DMA devices: acknowledge transfer; request any more pending; signal any
waiting processes; and finally enter the scheduler or return

Question: Who is scheduling whom?

 Consider, e.g., network livelock

BLOCKING VS NON-BLOCKING

From programmer's point of view, |0 system calls exhibit one of three kinds of
behaviour:

Blocking: process suspended until IO completed
= Easy to use and understand.
= Insufficient for some needs.
Nonblocking: IO call returns as much as available
= Returns almost immediately with count of bytes read or written (possibly 0)
= Can be used by e.g. user interface code
= Essentially application-level "polled 10"

« Asynchronous: process runs while 10 executes

= |0 subsystem explicitly signals process when its 10 request has completed
= Most flexible (and potentially efficient)
= Also most complex to use
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HANDLING IO

e Input/Output (I0)

¢ Performing 10

« Handling 10
» Buffering & Strategies
= Other Issues
= Kernel Data Structures
= Performance

10 BUFFERING

To cope with various impedance mismatches between devices (speed, transfer size),
OS may buffer data in memory. Various buffering strategies:

« Single buffering: OS assigns a system buffer to the user request
* Double buffering: process consumes from one buffer while system fills the next
« Circular buffering: most useful for bursty 10

Buffering is useful for smoothing peaks and troughs of data rate, but can't help if on
average:

» Process demand > data rate (process will spend time waiting), or
« Data rate > capability of the system (buffers will fill and data will spill)
« Downside: can introduce jitter which is bad for real-time or multimedia

Details often dictated by device type: character devices often by line; network
devices particularly bursty in time and space; block devices make lots of fixed size
transfers and often the major user of 10 buffer memory

SINGLE BUFFERING

OS assigns a single buffer to the user request:

« OS performs transfer, moving buffer to userspace when complete (remap or copy)
* Request new buffer for more |0, then reschedule application to consume
(readahead or anticipated input)

OS must track buffers

Also affects swap logic: if IO is to same disk as swap device, doesn't make sense
to swap process out as it will be behind the now queued 10 request!

A crude performance comparison between no buffering and single buffering:

Let t be time to input block and ¢ be computation time between blocks
Without buffering, execution time between blocks is  + ¢

With single buffering, time is max(c, t) + m where m is the time to move data
from buffer to user memory

e For a terminal: is the buffer a line or a char? depends on user response required

DOUBLE BUFFERING

¢ Often used in video rendering
Rough performance comparison: takes max(c, ) thus
= possible to keep device at full speed if ¢ < ¢
= while if ¢ > £, process will not have to wait for |0
Prevents need to suspend user process between |10 operations
...also explains why two buffers is better than one buffer, twice as big
Need to manage buffers and processes to ensure process doesn't start consuming
from an only partially filled buffer

CIRCULAR BUFFERING

» Allows consumption from the buffer at a fixed rate, potentially lower than the
burst rate of arriving data

« Typically use circular linked list which is equivalent to a FIFO buffer with queue
length
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OTHER ISSUES

« Caching: fast memory holding copy of data for both reads and writes; critical to
|0 performance

» Scheduling: order 10 requests in per-device queues; some OSs may even attempt
to be fair

« Spooling: queue output for a device, useful if device is "single user” (e.g., printer),
i.e. can serve only one request at a time

« Device reservation: system calls for acquiring or releasing exclusive access to a
device (care required)

« Error handling: generally get some form of error number or code when request
fails, logged into system error log (e.g., transient write failed, disk full, device
unavailable, ...)

KERNEL DATA STRUCTURES

To manage all this, the OS kernel must maintain state for IO components:

¢ Open file tables
o Network connections
e Character device states

Results in many complex and performance criticial data structures to track buffers,
memory allocation, "dirty” blocks

Consider reading a file from disk for a process:

* Determine device holding file

Translate name to device representation
Physically read data from disk into buffer
Make data available to requesting process
Return control to process

PERFORMANCE

10 a major factor in system performance

» Demands CPU to execute device driver, kernel 10 code, etc.
o Context switches due to interrupts
 Data copying

Improving performance:

e Reduce number of context switches

¢ Reduce data copying

¢ Reduce number of interrupts by using large transfers, smart controllers, polling
e Use DMA where possible

Balance CPU, memory, bus and 10 performance for highest throughput.

Improving |0 performance remains a significant challenge...

SUMMARY

e Input/Output (10)
= Hardware
= Device Classes
= OS Interfaces
¢ Performing 10
= Polled Mode
= Interrupt Driven
= Blocking vs Non-blocking
e Handling 10
» Buffering & Strategies
= Other Issues
= Kernel Data Structures
= Performance
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[09] STORAGE

OUTLINE

» File Concepts
= Filesystems
= Naming Files
= File Metadata
e Directories
= Name Space Requirements
= Structure
= Implementation
e Files
= Operations
= Implementation
= Access Control, Existence Control, Concurrency Control

FILE CONCEPTS

« File Concepts
= Filesystems
= Naming Files
= File Metadata
e Directories
 Files

FILESYSTEM

We will look only at very simple

text name  user file-id

filesystems here, having two

from file

filing system

main components: user space -ﬁl B

Directory
Service

Storage Service

1/O subsystem

Disk Handler

1. Directory Service, mapping names to file identifiers, and handling access and

existence control

2. Storage Service, providing mechanism to store data on disk, and including means

to implement directory service
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WHAT ISAFILE?

The basic abstraction for non-volatile storage:

e User abstraction — compare/contrast with segments for memory
« Many different types:

= Data: numeric, character, binary

= Program: source, object, executable

= "Documents”
« Typically comprises a single contiguous logical address space

Can have varied internal structure:

« None: a simple sequence of words or bytes
« Simple record structures: lines, fixed length, variable length
o Complex internal structure: formatted document, relocatable object file

WHAT ISAFILE?

OS split between text and binary is quite common where text files are treated as

¢ A sequence of lines each terminated by a special character, and
« With an explicit EOF character (often)

Can map everything to a byte sequence by inserting appropriate control characters,
and interpretation in code. Question is, who decides:

« OS: may be easier for programmer but will lack flexibility
¢ Programmer: has to do more work but can evolve and develop format

NAMING FILES

Files usually have at least two kinds of "name":

« System file identifier (SFID): (typically) a unique integer value associated with a
given file, used within the filesystem itself

¢ Human name, e.g. hello. java: what users like to use

« May have a third, User File Identifier (UFID) used to identify open files in
applications

Mapping from human name to SFID is held in a directory, e.g.,

Note that directories are also non-volatile so they must

Name SFID be stored on disk along with files — which explains why
hello.java 123531 the storage system sits "below” the directory service
Makefile 23812
README 9742

FILE METADATA

NB. Having resolved the name to an SFID,
the actual mapping from SFID to File
5«33 Fite contror 810k CONtrol Block (FCB) is OS and filesystem
/e e ordiecton) | specific

4 Location on Disk
Size in bytes

Metadata Table
SFID (on disk)

W= In addition to their contents and their
“\[Access permissions name(s), files typically have a number of
other attributes or metadata, e.g.,

Location: pointer to file location on device

Size: current file size

Type: needed if system supports different types

Protection: controls who can read, write, etc.

Time, date, and user identification: data for protection, security and usage
monitoring
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DIRECTORIES

« File Concepts
« Directories
= Name Space Requirements

REQUIREMENTS

A directory provides the means to translate a (user) name to the location of the file
on-disk. What are the requirements?

« Efficiency: locating a file quickly.
« Naming: user convenience

= Structure
= Implementation = allow two (or, more generally, N) users to have the same name for different
« Files files
= allow one file have several different names
 Grouping: logical grouping of files by properties, e.g., "all Java programs”, "all
games”
EARLY ATTEMPTS STRUCTURE: TREE

« Single-level: one directory shared between all users
= naming problem
= grouping problem

« Two-level directory: one directory per user
= access via pathname (e.g., bob:hello. java)
= can have same filename for different user
= ... but still no grouping capability.

Add a general hierarchy for more flexibility

Directories hold files or [further]
directories, reflecting structure of
organisation, users' files, etc

Create/delete files relative to a given
directory

Efficient searching and arbitrary grouping
capability

The human name is then the full path

name, though these can get unwiedly,
e.g., /usr/groups/X11R5/src/mit/server/os/4.2bsd/utils.c.
Resolve with relative naming, login directory, current working directory. Sub-
directory deletion either by requiring directory empty, or by recursively deleting
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STRUCTURE: DAG

Hierarchy useful but only allows one
name per file. Extend to directed acyclic
graph (DAG) structure: allow shared
subdirectories and files, and multiple
aliases for same thing

Manage dangling references: use back-
references or reference counts

Other issues include: deletion (more
generally, permissions) and knowing
when ok to free disk blocks; accounting and who gets "charged” for disk usage; and
cycles, and how we prevent them

DIRECTORY IMPLEMENTATION

/Ann/mail/B
[t=
Name |D| SFID

Ann [¥[1034
Bob |¥| 179

Directories are non-volatile so store as "files" on disk, each with own SFID

« Must be different types of file, for traversal
« Operations must also be explicit as info in directory used for access control, or
could (eg) create cycles
» Explicit directory operations include:
= Create/delete directory
= List contents
= Select current working directory
= Insert an entry for a file (a "link")

FILES

« File Concepts
e Directories
« Files
= Operations
= Implementation
= Access Control, Existence Control, Concurrency Control

OPERATIONS

Basic paradigm of use is: open, use, close

UFID | SFID |File Control Block (Copy)

Opening or creating a file:
UFID open (<pathname>) or
UFID create(<pathname>)

23421 location on disk, size,.
3250 " "

10532 " "
7122 " "

I
IR

« Directory service recursively searching directories for components of
<pathname>

e Eventually get SFID for file, from which UFID created and returned
 Various modes can be used

Closing a file: status = close(UFID)

» Copy [new] file control block back to disk and invalidate UFID
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IMPLEMENTATION

start of file end of file ==
L already accessed| to be read ﬁ

=

current L

file position

Associate a cursor or file position with each open file (viz. UFID), initialised to start
of file

 Basic operations: read next or write next, e.g., read (UFID, buf, nbytes),
orread(UFID, buf, nrecords)

Access pattern:

 Sequential: adds rewind (UFID) to above
¢ Direct Access: read (N) orwrite(N) using seek (UFID, pos)
« Maybe others, e.g., append-only, indexed sequential access mode (ISAM)

ACCESS CONTROL

File owner/creator should be able to control what can be done, by whom

« File usually only accessible if user has both directory and file access rights
e Former to do with lookup process — can't look it up, can't open it
¢ Assuming a DAG structure, do we use the presented or the absolute path

Access control normally a function of directory service so checks done at file open
time

» E.g, read, write, execute, (append?), delete, list, rename
» More advanced schemes possible (see later)

EXISTENCE CONTROL

What if a user deletes a file?

» Probably want to keep file in existence while there is a valid pathname
referencing it

¢ Plus check entire FS periodically for garbage

« Existence control can also be a factor when a file is renamed/moved.

CONCURRENCY CONTROL

Need some form of locking to handle simultaneous access

« Can be mandatory or advisory
e Locks may be shared or exclusive
e Granularity may be file or subset

SUMMARY

« File Concepts
= Filesystems
= Naming Files
= File Metadata
e Directories
= Name Space Requirements
» Structure
= Implementation
o Files
= Operations
= Implementation
= Access Control, Existence Control, Concurrency Control
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[10] COMMUNICATION OUTLINE

e Communication

= Requirements

= Inter-Thread Communication

= |nter-Host Communication

= Inter-Process Communication
¢ Inter-Process Communication

= Concept

= fork(2),wait(2)

= Signals

= Pipes

= Named Pipes / FIFOs

= Shared Memory Segments

= Files

= Unix Domain Sockets

COMMUNICATION REQUIREMENTS

For meaningful communication to take place, two or more parties have to exchange

o Communication information according to a protocol:
= Requirements
« Inter-Thread Communication « Data transferred must be in a commonly-understood format (syntax)
« Inter-Host Communication ¢ Data transferred must have mutually-agreed meaning (semantics)
« Inter-Process Communication ¢ Data must be transferred according to mutually understood rules
¢ Inter-Process Communication (synchronisation)

In computer communications, the parties in question come in a range of forms,
typically:

e Threads
e Processes
e Hosts

Ignore problems of discovery, identification, errors, etc. for now
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INTER-THREAD COMMUNICATION

It is a common requirement for two running threads to need to communicate
» E.g., to coordinate around access to a shared variable

If coordination is not implemented, then all sorts of problems can occur. Range of
mechanisms to manage this:

¢ Mutexes

Semaphores

e Monitors

Lock-Free Data Structures

Not discussed here!

 You'll get into the details next year in Concurrent and Distributed Systems
e (Particularly the first half, on Concurrency)

INTER-HOST COMMUNICATION

Passing data between different hosts:

« Traditionally different physical hosts
« Nowadays often virtual hosts

Key distinction is that there is now no shared memory, so some form of
transmission medium must be used — networking

Also not discussed here!

¢ In some sense it is "harder” than IPC because real networks are inherently:
= Unreliable: data can be lost
= Asynchronous: even if data is not lost, no guarantees can be given about
when it arrived
* You'll see a lot more of this next year in Computer Networking

INTER-PROCESS COMMUNICATION

In the context of this course, we are concerned with Inter-Process Communication
(IPQ)

* What it says on the tin — communication between processes on the same host
e Key point — it is possible to share memory between those processes

Given the protection boundaries imposed by the OS, by design, the OS must be
involved in any communication between processes

« Otherwise it would be tantamount to allowing one process to write over
another's address space
e We'll focus on POSIX mechanisms

INTER-PROCESS
COMMUNICATION

e Communication
o Inter-Process Communication
= Concept
= fork(2),wait(2)
= Signals
= Pipes
= Named Pipes / FIFOs
= Shared Memory Segments
= Files
= Unix Domain Sockets
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CONCEPT

For IPC to be a thing, first you need multiple processes

« Initially created by running processes from a shell
» Subsequently may be created by those processes, ad infinitum
e (...until your machine dies from your fork bomb...)

Basic process mechanisms: fork (2) followed by execve (2) and/or wait (2)

Will look at that plus several other common POSIX mechanisms

FORK (2),WAIT(2)
Simply put, fork (2) allows a process to clone itself:

« Parent process creates child process
 Child receives copy-on-write (COW) snapshot of parent's address space

Parent typically then either:

e Detaches from child — hands responsibility back to init process
« Waits for child — calling wait (2), parent blocks until child exits

SIGNALS

Simple asynchronous notifications on another process

e Arange of signals (28 at my last count), defined as numbers
* Mapped to standard #defines, a few of which have standard mappings to
numbers

Among the more common ones:

e SIGHUP: hangup the terminal (1)

e SIGINT:terminal interrupt (2)

e SIGKILL:terminate the process [cannot be caught or ignored] (9)

¢ SIGTERM: terminate process (15)

e SIGSEGV:segmentation fault — process made an invalid memory reference
e SIGUSR1/2:two user signals [system defined numbers]

Use sigaction(2) to specify what function the signalled process should invoke
on receipt of a given signal

PIPES

free space old data
new data

/ \ Process B

Process A

write(fd, buf, n) read(fd, buf, n)

Simplest form of IPC: pipe(2) returns a pair of file descriptors
e (£d[ 01, £d[1]) are the (read, write) fds
Coupled with fork(2), can now communicate between processes:

e Invoke pipe(2) to get read/write fds
e fork(2) to create child process
e Parent and child then both have read/write fds available, and can communicate
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NAMED PIPES / FIFOS

The same as pipe(2) — except that it has a name, and isn't just an array of two
fds

« This means that the two parties can coordinate without needing to be in a
parent/child relationship
¢ All they need is to share the (path)name of the FIFO

Then simply treat as a file:

e open(2)
e read(2)
e write(2)

open (2) will block by default, until some other process opens the FIFO for reading

¢ Can set non-blocking via O_NDELAY

SHARED MEMORY SEGMENTS

What it says on the tin — obtain a segment of memory that is shared between two
(or more) processes

* shmget (2) to get a segment
e shmat(2) to attach to it

Then read and write simply via pointers — need to impose concurrency control to
avoid collisions though

Finally:

e shmdt (2) to detach
e shmctl (2) to destroy once you know no-one still using it

FILES

Locking can be mandatory (enforced) or advisory (cooperative)

 Advisory is more widely available

fentl(2) sets, tests and clears the lock status

* Processes can then coordinate over access to files
read(2),write(2), seek(2) to interact and navigate

Memory Mapped Files present a simpler — and often more efficient — API

 mmap (2) "maps” a file into memory so you interact with it via a pointer
e Still need to lock or use some other concurrency control mechanism

UNIX DOMAIN SOCKETS

Sockets are commonly used in network programming — but there is (effectively) a
shared memory version for use between local processes, having the same API:

e socket (2) creates a socket, using AF_UNIX

e bind(2) attaches the socket to a file

« The interact as with any socket
= accept(2),listen(2),recv(2),send(2)
= sendto(2),recvfrom(2)

Finally, socketpair (2) uses sockets to create a full-duplex pipe

e Can read/write from both ends
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SUMMARY

e Communication

= Requirements

= Inter-Thread Communication

= Inter-Host Communication

= Inter-Process Communication
 Inter-Process Communication

= Concept

s fork(2),wait(2)

= Signals

= Pipes

= Named Pipes / FIFOs

= Shared Memory Segments

= Files

= Unix Domain Sockets

Dr Richard Mortier IA Operating Systems, 2015/16 71/93



[11] CASE STUDY: UNIX

OUTLINE

e Introduction
 Design Principles
= Structural, Files, Directory Hierarchy
Filesystem
= Files, Directories, Links, On-Disk Structures
= Mounting Filesystems, In-Memory Tables, Consistency
« 10
= Implementation, The Buffer Cache
Processes
= Unix Process Dynamics, Start of Day, Scheduling and States
The Shell
= Examples, Standard 10
Summary

INTRODUCTION

Introduction
 Design Principles
Filesystem

« IO

Processes

The Shell

e Summary

HISTORY (1)

First developed in 1969 at Bell Labs (Thompson & Ritchie) as reaction to bloated
Multics. Originally written in PDP-7 asm, but then (1973) rewritten in the "new”
high-level language C so it was easy to port, alter, read, etc. Unusual due to need
for performance

6th edition ("V6") was widely available (1976), including source meaning people
could write new tools and nice features of other OSes promptly rolled in

V6 was mainly used by universities who could afford a minicomputer, but not
necessarily all the software required. The first really portable OS as same source
could be built for three different machines (with minor asm changes)

Bell Labs continued with V8, V9 and V10 (1989), but never really widely available
because V7 pushed to Unix Support Group (USG) within AT&T

AT&T did System Ill first (1982), and in 1983 (after US government split Bells),
System V. There was no System [V

Dr Richard Mortier

IA Operating Systems, 2015/16 72/93




HISTORY (1l)

By 1978, V7 available (for both the 16-bit PDP-11 and the new 32-bit VAX-11).
Subsequently, two main families: AT&T "System V", currently SVR4, and Berkeley:
"BSD", currently 4.4BSD

Later standardisation efforts (e.g. POSIX, X/OPEN) to homogenise

USDL did SVR2 in 1984; SVR3 released in 1987; SVR4 in 1989 which supported the
POSIX.1 standard

In parallel with AT&T story, people at University of California at Berkeley (UCB)
added virtual memory support to "32V" [32-bit V7 for VAX] and created 3BSD

HISTORY (Ill)

4BSD development supported by DARPA who wanted (among other things) OS
support for TCP/IP

By 1983, 4.2BSD released at end of original DARPA project

1986 saw 4.3BSD released — very similar to 4.2BSD, but lots of minor tweaks. 1988
had 4.3BSD Tahoe (sometimes 4.3.1) which included improved TCP/IP congestion
control. 19xx saw 4.3BSD Reno (sometimes 4.3.2) with further improved congestion
control. Large rewrite gave 4.4BSD in 1993; very different structure, includes LFS,
Mach VM stuff, stackable FS, NFS, etc.

Best known Unix today is probably Linux, but also get FreeBSD, NetBSD, and
(commercially) Solaris, OSF/1, IRIX, and Tru64

SIMPLIFIED UNIX FAMILY TREE

Linux arises (from Minix?) around 1991

1969 First Editi . - .
it on (version 0.01), or more realistically, 1994
Fifth Editi . . .
o i Edition (version 1.0). Linux version 2.0 out 1996.
1975 L Version 2.2 was out in 1998/ early 1999?)
1976 Sixth Edition
1977 | _ ) )
1978 Seventh Edition ~ o, You're not expected to memorise this
1979 T~3BSD
1980 4.0BSD
1981 4.1BSD
1982 System Il \ /
1983 System V  Eighth Edition 4.2BSD ) .
1984 SVR2 Sun0S
1985 _
1986 Mach 4.3BSD Sun0S 3
1987  SVR3 Ninth Edition _
1988 4.3BSD/Tahoe
1989 SVR4 Tenth Edition k..wum‘_a\x&:e
1990 OSF/1 Sun0S 4
1991 |
1992 miﬂ.:.h
1993 &.&hwmb Mebmz..ﬂ 2

DESIGN PRINCIPLES

Introduction
Design Principles
= Structural, Files, Directory Hierarchy
Filesystem
* |0
Processes
The Shell
Summary
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DESIGN FEATURES

Ritchie & Thompson (CACM, July 74), identified the (new) features of Unix:

¢ A hierarchical file system incorporating demountable volumes

« Compatible file, device and inter-process 10 (naming schemes, access control)
« Ability to initiate asynchronous processes (i.e., address-spaces = heavyweight)
« System command language selectable on a per-user basis

Completely novel at the time: prior to this, everything was "inside” the OS. In Unix
separation between essential things (kernel) and everything else

STRUCTURAL OVERVIEW

Clear separation between user and kernel
portions was the big difference between
Unix and contemporary systems — only
the essential features inside OS, not the

® editors, command interpreters, compilers,
etc.

Application
(Process)

Application
(Process)

Application
(Process)

User
System Call Interface

Kernel

Processes are unit of scheduling and
@%ﬁv@ Ta mﬁasu @uﬁ%@u @ protection: the command interpreter

Among other things: allows user wider choice without increasing size of core OS; ~N N\ (‘shell’) just a process
allows easy replacement of functionality — resulted in over 100 subsystems | oo | orario | N -
. . 71 7 o concurrency within kernel
including a dozen languages | _ |
] B ] e AlL 10 looks like operations on files: in
: L 1 f f 1 Hardware
Highly portable due to use of high-level language ) T T ) Unix, everything is a file
Features which were not included: real time, multiprocessor support
Fl _|mm<m._.m_<_ FILE ABSTRACTION

Introduction
 Design Principles
Filesystem
= Files, Directories, Links, On-Disk Structures
= Mounting Filesystems, In-Memory Tables, Consistency
« IO
e Processes
The Shell
e Summary

File as an unstructured sequence of bytes which was relatively unusual at the time:
most systems lent towards files being composed of records

» Cons: don't get nice type information; programmer must worry about format of
things inside file

e Pros: less stuff to worry about in the kernel; and programmer has flexibility to
choose format within file!

Represented in user-space by a file descriptor (£d) this is just an opaque identifier
— a good technique for ensuring protection between user and kernel
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FILE OPERATIONS

Operations on files are:

o fd open(pathname, mode)

o fd creat (pathname, mode)

e bytes = read(fd, buffer, nbytes)
e count = write(fd, buffer, nbytes)
e reply = seek(fd, offset, whence)
e reply close(£fd)

The kernel keeps track of the current position within the file
Devices are represented by special files:

« Support above operations, although perhaps with bizarre semantics
» Also have ioctl for access to device-specific functionality

DIRECTORY HIERARCHY
Directories map names to files (and
directories) starting from distinguished root /
directory called / \\_ //

bin/ dev/ etc/ home/ usr/
Fully qualified pathnames mean performing ,...\ \_/ _ \ / /...
traversal from root hda hdb tty .

steve/ ummM\

Every directory has . and . . entries: refer to \ /
self and parent respectively. Also have unix.ps index.html

shortcut of current working directory (cwd)

which allows relative path names; and the

shell provides access to home directory as ~username (e.g. ~mort/). Note that
kernel knows about former but not latter

Structure is a tree in general though this is slightly relaxed

ASIDE: PASSWORD FILE

e /etc/passwd holds list of password entries of the form user-
name:encrypted-passwd:home-directory:shell
« Also contains user-id, group-id (default), and friendly name.
« Use one-way function to encrypt passwords i.e. a function which is easy to
compute in one direction, but has a hard to compute inverse. To login:
= Get user name
= Get password
= Encrypt password
= Check against version in /etc/password
= [f ok, instantiate login shell
= Otherwise delay and retry, with upper bound on retries
¢ Publicly readable since lots of useful info there but permits offline attack
o Solution: shadow passwords (/etc/shadow)

FILE SYSTEM IMPLEMENTATION

type mode
userid groupid

size nblocks
nlinks flags

timestamps (x3)

direct
blocks
(512)

direct blocks (x12)

T

single indirect

to block with 512
single indirect entries

to block with 512
double indirect entries

Inside the kernel, a file is represented by a data structure called an index-node or i-
node which hold file meta-data: owner, permissions, reference count, etc. and
location on disk of actual data (file contents)
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I-NODES

Why don't we have all blocks in a simple table?

e Why have first few in inode at all?

* How many references to access blocks at different places in the file?

If block can hold 512 block-addresses (e.g. blocks are 4kB, block addresses are 8
bytes), what is max size of file (in blocks)?

Where is the filename kept?

DIRECTORIES AND LINKS

Directory is (just) a file which

maps filenames to i-nodes —

that is, it has its own i-node

pointing to its contents Flioname Hiode

Filename I-Node

13
2

/1N

home/ bin/  doc/ "

AN D

.. Steve/  jean/ hello.txt

An instance of a file in a
directory is a (hard) link hence
the reference count in the i-
node. Directories can have at
most 1 (real) link. Why?

misc/ index.html unix.ps

Also get soft- or symbolic-
links: a ‘'normal’ file which contains a filename

ON-DISK STRUCTURES

Hard Disk

\ Partition 1 // \ Partition 2 //
3 3
& o

@ | Inode Data @ |Inode Data
2| Table Blocks w Table Blocks

7] @

o1 ]2 i1 jliwt[#2 1|1 m

A disk consists of a boot block followed by one or more partitions. Very old disks
would have just a single partition. Nowadays have a boot block containing a
partition table allowing OS to determine where the filesystems are

Figure shows two completely independent filesystems; this is not replication for
redundancy. Also note |inode table| >> |superblock]; |[data blocks| >> |inode table|

ON-DISK STRUCTURES

A partition is just a contiguous range of N fixed-size blocks of size k for some N and
k, and a Unix filesystem resides within a partition

Common block sizes: 512B, 1kB, 2kB, 4kB, 8kB
Superblock contains info such as:

e Number of blocks and free blocks in filesystem
o Start of the free-block and free-inode list
 Various bookkeeping information

Free blocks and inodes intermingle with allocated ones

On-disk have a chain of tables (with head in superblock) for each of these.
Unfortunately this leaves superblock and inode-table vulnerable to head crashes so
we must replicate in practice. In fact, now a wide range of Unix filesystems that are
completely different; e.g., log-structure
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MOUNTING FILESYSTEMS

Entire filesystems can be

IN-MEMORY TABLES

Recall process sees files as file

process-specific

mounted on an existing R G _ Nount descriptors rocess Ll
directory in an already mounted ' \\\ . . . s /

) ! . In implementation these are just 2[5 Process B
filesystem i bin/ dev/ etc/ usr/ File-System o - . I

! / \ / ! \ _ _on /dev/hda2 indices into process-specific open file i o=
Atvery start,only / existsso | . . / table M m
must mount a root filesystem | "%t PosZ R LNl N . . g —i g
o ! steve/ sean/ | Entries point to system-wide open file
Subsequently can mount other C \ table. Why? ] ——
filesystems, e.g. : " . . .
................ These in turn point to (in memo o acitve inode table

mount ("/dev/hda2", . P ( ) e N
. . . inode table

/home", options) )\ S—

o : ~| 1node 78
Provides a unified name-space: e.g. access /home /mort/ directly (contrast with piioyistped
Windows9x or NT) -/
Cannot have hard links across mount points: why? What about soft links?
ACCESS CONTROL CONSISTENCY ISSUES
Owner | Group | World Owner | Group | World To delete afile, use the unlink system call — from the shell, this is rm

R W E|R WE|R WE

R WE|R WEI|R WE

= 0640 = 0755

Access control information held in each inode

 Three bits for each of owner, group and world: read, write and execute
* What do these mean for directories? Read entry, write entry, traverse directory

In addition have setuid and setgid bits:

« Normally processes inherit permissions of invoking user

 Setuid/setgid allow user to "become” someone else when running a given
program

« E.g. prof owns both executable test (0711 and setuid), and score file (0600)

<filename>
Procedure is:

o Check if user has su cient permissions on the file (must have write access)
Check if user has su cient permissions on the directory (must have write access)
If ok, remove entry from directory

Decrement reference count on inode

If now zero: free data blocks and free inode

If crash: must check entire filesystem for any block unreferenced and any block
double referenced

Crash detected as OS knows if crashed because root fs not unmounted cleanly
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UNIXFILESYSTEM: SUMMARY

e Files are unstructured byte streams
« Everything is a file: "normal” files, directories, symbolic links, special files
« Hierarchy built from root (/)

10

Introduction
Design Principles

 Unified name-space (multiple filesystems may be mounted on any leaf directory) * Filesystem

¢ Low-level implementation based around inodes - 10

« Disk contains list of inodes (along with, of course, actual data blocks) = Implementation, The Buffer Cache
 Processes see file descriptors: small integers which map to system file table * Processes

« Permissions for owner, group and everyone else e The Shell

 Setuid/setgid allow for more flexible control * Summary

« (are needed to ensure consistency

I0 IMPLEMENTATION THE BUFFER CACHE

» Everything accessed via the file system
« Two broad categories: block and character; ignoring low-level gore:
= Character 10 low rate but complex — most functionality is in the "cooked”
interface
= Block IO simpler but performance matters — emphasis on the buffer cache

User
— Kernel
_ Generic File System Layer _
Buffer
Cache
Cooked
Character /O
Raw Character I/0 _ _ Raw Block I/0 _
Device 01_\.-_ _B._\F.B:<= Device Driver | | Device Uw:\.s_
7 T T T Kernel
] ' v !} Hardware

Basic idea: keep copy of some parts of disk in memory for speed
On read do:

e Locate relevant blocks (from inode)
e Check if in buffer cache

e If not, read from disk into memory
e Return data from buffer cache

On write do same first three, and then update version in cache, not on disk

o "Typically" prevents 85% of implied disk transfers
e But when does data actually hit disk?

e Call sync every 30 seconds to flush dirty buffers to disk

¢ (Can cache metadata too — what problems can that cause?
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PROCESSES

UNIXPROCESSES

Recall: a process is a program in execution

* Introduction _ Kernel Address Space .
« Design Principles Unix i~ (shared by all Processes have three segments: text, data
« Filesystem Kernel . and stack. Unix processes are heavyweight
* 10 Stack S ‘ Text: holds the machine instructions for the
« Processes ' cement Address Space
. . . grows downward per Process program
= Unix Process Dynamics, Start of Day, Scheduling and States ¥y ¥ \
e The Shell Free 4 \ Data: contains variables and their values
N Space . .
Summary P 1 Stack: used for activation records (i.e.
O entey et storing local variables, parameters, etc.)
UNIX PROCESS DYNAMICS START OF DAY

Process is represented by an opaque process id (pid), organised hierarchically with
parents creating children. Four basic operations:

e pid = fork ()

e reply =execve(pathname, argv, envp)
e exit(status)

e pid =wait(status)

fork () nearly always parent
followed by exec() T
leading to vfork()

parent process (potentially) continues

wait

. child
and/or copy-on-write process process

zombie

(COW). Also makes a copy
of entire address space
which is not terribly
efficient

program executes
EXECVE ) -

Kernel (/vmunix) loaded from disk (how — where's the filesystem?) and execution
starts. Mounts root filesystem. Process 1 (/etc/init) starts hand-crafted

init reads file /etc/inittab and for each entry:

» Opens terminal special file (e.g. /dev/tty0)
e Duplicates the resulting fd twice.
e Forks an /etc/tty process.

Each tty process next: initialises the terminal; outputs the string login: & waits
for input; execve()'s /bin/login

login then: outputs "password:" & waits for input; encrypts password and checks it
against /etc/passwd; if ok, sets uid & gid, and execve () shell

Patriarch init resurrects /etc/tty on exit
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UNIX PROCESS SCHEDULING (1) UNIX PROCESS SCHEDULING (11)

e Priorities 0-127; user processes > PUSER = 50. Round robin within priorities, e Thus if e.g. load is 1 this means that roughly 90% of 1s CPU usage is "forgotten”
quantum 100ms. within 5s
e Priorities are based on usage and nice, i.e. » Base priority divides processes into bands; CPU and nice components prevent
P.(i) = Base; + CPU;i - 1) +2 X nice: processes moving out of their bands. The bands are:
/ / 4 / = Swapper; Block 10 device control; File manipulation; Character 10 device
gives the priority of process j at the beginning of interval / where: control; User processes
CPU;(0) = |w x load, CPU;(@ — 1) + nice; = Within the user process band the execution history tends to penalize CPU
, (2 x load)) + 1 _ bound processes at the expense of 10 bound processes
and nice; is a (partially) user controllable adjustment parameter in the range

[—20, 20]
« load; is the sampled average length of the run queue in which process j resides,
over the last minute of operation

UNIX PROCESS STATES THE SHELL

ru = running rk- = running « Introduction
(user- (kernel- « Design Principles
syscall BOva D)_Ova . _nm_.mmv\m.nma
interrupt return return z = zombie p = pre- 10
/v empted * Processes
@n — rk preempt sl = m_.mmU:J@ rb = runnable e The Shell
\ ; = Examples, Standard 10
, ¢ = created
sleep schedule \\ : MCB_\SNJ\
e NB. This is simplified — see Concurrent
e —_ e ...... - Systems section 23.14 for detailed

descriptions of all states/transitions

fork ()
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THE SHELL SHELL EXAMPLES

Shell just a process like everything else.

/Users/mort/src
Needn't understand commands, just files $ 1s -F
awk-scripts/ karaka/ ocamllint/ sh-scripts/
issue prompt backup-scripts/ mrt.0/ opensharingtoolkit/ sockman/
Uses path for convenience, to avoid needing bib2x0.9.1/  ocal/ pandoc-templates/  tex/
repeat c-utils/ ocaml/ pttcp/ tmp/
i dtrace/ ocaml-libs/ pyrt/ uon/
._...C :.< QCN—._.—n_mQ _Um.ﬁ—)_BmBmm in :M::: exapraxia-gae/ ocaml-mrt/ python-scripts/ vbox-bridge/
Q ¢ dli external/ ocaml-pst/ r/
H H- rea get command line junk/ ocaml.org/ scrapers/
Conventionally & specifies background 3 od python-scripte/
/Users/mort/src/python-scripts

Parsing stage (omitted) can do lots: wildcard
expansion ("globbing”), "tilde" processing

$ 1s -1F
child total 224
Eﬁﬁml —rW-T——r—— - 7 2010 LICENSE
—IrW-Xw-r—— 6 09:18 README.md

—IWXI-XI-X 2013 bberry.py*
program —IWXT-XT-X r- 6 2015 bib2json.py*
executes rWXI—Xr-X , 2013 cal.py*
« -rW-r--r-- 6 2013 cc4unifdef.py

!

—IWXI-XI-X mof filebomb E\*
zombie - - 3 - 3 8
process °

Prompt is $. Use man to find out about commands. User friendly?

STANDARD 10 SUMMARY

Every process has three fds on creation:
Introduction

Design Principles

e stdin:where to read input from

e stdout: where to send output o Filesystem
e stderr: where to send diagnostics ¢« |10
Normally inherited from parent, but shell allows redirection to/from a file, e.g., * Processes
e The Shell
e 1s >listing.txt e Summary

e 1s >&listing.txt
e sh <commands.sh

Consider:1s >temp.txt; wc <temp.txt >results

o Pipeline is better (e.g. 1s | wc >results)
» Unix commands are often filters, used to build very complex command lines
« Redirection can cause some buffering subtleties
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MAIN UNIX FEATURES

e File abstraction
= Afile is an unstructured sequence of bytes
= (Not really true for device and directory files)
e Hierarchical namespace
= Directed acyclic graph (if exclude soft links)
= Thus can recursively mount filesystems
¢ Heavy-weight processes
 10: block and character
e Dynamic priority scheduling
= Base priority level for all processes
= Priority is lowered if process gets to run
= Over time, the past is forgotten
e But V7 had inflexible IPC, ine cient memory management, and poor kernel
concurrency
 Later versions address these issues.

SUMMARY

Introduction
Design Principles
= Structural, Files, Directory Hierarchy
Filesystem
= Files, Directories, Links, On-Disk Structures
= Mounting Filesystems, In-Memory Tables, Consistency
¢ |0
= Implementation, The Buffer Cache
Processes
= Unix Process Dynamics, Start of Day, Scheduling and States
The Shell
= Examples, Standard 10
Summary
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[12] CASE STUDY: WINDOWS NT | OUTLINE

e |ntroduction

 Design Principles

Design

= Structural

= HAL, Kernel

= Processes and Threads, Scheduling

= Environmental Subsystems

Objects

= Manager, Namespace

= Other Managers: Process, VM, Security Reference, 10, Cache
Filesystems

= FAT16, FAT32, NTFS

= NTFS: Recovery, Fault Tolerance, Other Features
Summary

INTRODUCTION PRE-HISTORY

Microsoft and IBM co-developed OS/2 — in hand-written 80286 assembly! As a

* Introduction result, portability and maintainability weren't really strong features so in 1988

« Design Principles Microsoft decided to develop a "new technology” portable OS supporting both 0OS/2
 Design and POSIX APIs

e Objects

« Filesystems ¢ Goal: A 32-bit preemptive multitasking operating system for modern

« Summary microprocessors

Originally, NT was supposed to use the OS/2 API as its native environment, but
during development NT was changed to use the Win32 API, reflecting the
popularity of Windows 3.0
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NEW TECHNOLOGY

After 0S/2, MS decide they need "New Technology":

1988: Dave Cutler recruited from DEC

1989: team (~10 people) starts work on a new OS with a micro-kernel
architecture

Team grew to about 40 by the end, with overall effort of 100 person-years
July 1993: first version (3.1) introduced. Sucked

September 1994: NT 3.5 released, providing mainly size and performance
optimisations

May 1995: NT 3.51 with support for the Power PC, and more performance tweaks
July 1996: NT 4.0 with "new" (Windows 95) look 'n’ feel. Saw some desktop use
but mostly limited to servers. Various functions pushed back into the kernel,
notably graphics rendering

CONTINUED EVOLUTION

e Feb 2000: NT 5.0 aka Windows 2000. Borrows from windows 98 look 'n’ feel.
Provides server and workstation versions, latter of which starts to get wider use.
Big push to finally kill DOS/Win9x family that fails due to internal politicking

e Oct 2001: Windows XP (NT 5.1) launched with home and professional editions.
Finally kills Win9x. Several "editions” including Media Center [2003], 64-bit
[2005]) and Service Packs (SP1, SP2). 45 million lines of code

e 2003: Server product 2K3 (NT 5.2), basically the same modulo registry tweaks,
support contract and of course cost. Comes in many editions

e 2006: Windows Vista (NT 6.0). More security, more design, new APls

e 2009: Windows 7 (NT 7.0). Focused more on laptops and touch devices

e 2012: Windows 8 (NT 8.0). Radical new Ul with tiles, focused on touch at least as
much as supporting mouse/keyboard

e 2013: Windows 8.1 (NT 8.1). Back off the Ul a bit, more customisation

e 2015: Windows 10 (NT 10.0). More connectivity, for and between devices

DESIGN PRINCIPLES

Introduction
Design Principles
Design

Objects
Filesystems
Summary

KEY GOALS

¢ Portability: hence written in C/C++ with the HAL to hide low-level details

« Security: new uniform access model implemented via object manager, and
certified to US DOD level C2

¢ POSIX compliance: believed this would win sales, but desire to support both
POSIX and OS/2 (later WIN32) impacted overall design

o Multiprocessor support: most small OSs didn't have this, and traditional kernel
schemes are less well suited

 Extensibility: because, sometimes, we get things wrong; coupled with the above
point, most directly led to the use of a micro-kernel design

« International support: sell to a bigger market, meant adopting UNICODE as
fundamental internal naming scheme

o Compatibility with MS-DOS/Windows: don't want to lose customers, but achieved
partial compatibility only...
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OTHER GOALS THE RESULT

« Reliability: NT uses hardware protection for virtual memory and software Development of a system which was:
protection mechanisms for operationg system resources

« Compatibility: applications that follow the IEEE 1003.1 (POSIX) standard can be
compiled to run on NT without changing the source code

« Performance: NT subsystems can communicate with one another via high-
performance message passing

« Preemption: of low priority threads enable sthe system to respond quickly to
external events

« Designed for symmetrical multiprocessing

e Based around a micro-kernel

= E.g. environmental subsystems

o Written in high-level languages (C and C++)
= Hence portable to other machines, with
= Processor-dependent code isolated in a dynamic link library (HAL)

= Hence extensibility and multiprocessor support
e Constructed in a layered/modular fashion

DESIGN STRUCTURAL OVERVIEW

. 3,
Introduction Logon Wini6 Wini2 = MS-DOS Applications

Process _ 0s/2

 Design Principles _ _ ﬂg\mni
« Design Securiy 15008 X

= Structural e @ e

= HAL, Kernel % \

= Processes and Threads, Scheduling User Mode

—_— Native NT Interface (Sytem Calls) _|x%§ Mode

= Environmental Subsystems Exeoumve _ oo - .

H ) VM Object Process | |

» Objects (o) (] () () |
° _H_—mmw\MHmBm I ( File System Cache Security LPC !
1 Drivers Manager Manager Facility 1

e Summary | == T=—e-T== === p

Hardware

Both layered and modular ("layered
system of modules”)

Interactions at top are message
passing (IPC/LPC); next down is system
calls (traps); below is direct invocation

Note that this is a static representation;
in practice subsystems are DLLs (plus a
few services); also have various threads
running below

Kernel Mode: HAL, Kernel, & Executive

User Mode: environmental subsystems,
protection subsystem
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KERNEL MODE

Hardware Abstraction Layer (HAL): Layer of software (HAL .DELL) hiding hardware
details, e.g., interrupt mechanisms, DMA controllers, multiprocessor communication
mechanisms. Many implementations to the same interface

Kernel: Foundation for the executive and the subsystems, its execution is never
preempted (it can be interrupted, but will always resume)

Four main responsibilities:

1. CPU scheduling: hybrid dynamic/static priority scheduling

2. Interrupt and exception handling: kernel provides trap handling when exceptions
and interrupts are generated by hardware or software. If the trap handler can't
handle the exception, the kernel's exception dispatcher does. Handle interrupts
by either ISR or internal kernel routine

3. Low-level processor synchronisation: spin locks that reside in global memory to
achieve multiprocessor mutual exclusion, normally provided by HAL

4. Recovery after a power failure

KERNEL

Kernel is object oriented; all objects either dispatcher objects or control objects

« Dispatcher objects have to do with dispatching and synchronisation, i.e. they are
active or temporal things like
= Threads: basic unit of [CPU] dispatching
= Events: record event occurrences & synchronise
= Timer: tracks time, signals "time-outs”
= Mutexes: mutual exclusion in kernel mode
= Mutants: as above, but work in user mode too
= Semaphores: does what it says on the tin
« Control objects represent everything else, e.g.,
= Process: representing VAS and miscellaneous other bits
= Interrupt: binds ISR to an interrupt source [HAL]

PROCESSES AND THREADS

NT splits the virtual processor into two parts:

A process, the unit of resource ownership. Each has:
= A security token
= A virtual address space
= A set of resources (object handles)
= One or more threads
« A thread, the unit of dispatching. Each has:
= A scheduling state (ready, running, etc.)
= Other scheduling parameters (priority, etc.)
= A context slot
= An associated process (generally)

Threads have one of six states: ready, standby, running, waiting, transition,
terminated. They are co-operative: all in a process share the same address space &
object handles; lightweight: less work to create/delete than processes (shared
virtual addresss spaces)

CPU SCHEDULING

A process starts via the CreateProcess routine, loading any dynamic link
libraries that are used by the process and creating a primary thread. Additional
threads can be created via the CreateThread function

Hybrid static/dynamic priority scheduling:

e Priorities 16—31: "real time" (static) priority
e Priorities 1—15: "variable" (dynamic) priority
« Priority O is reserved for the zero page thread

Default quantum 2 ticks (~20ms) on Workstation, 12 ticks (~120ms) on Server
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CPU SCHEDULING

Some very strange things to remember:

* When thread blocks, it loses 1/3 tick from quantum
* When thread preempted, moves to head of own run queue

Threads have base and current (>base) priorities.

e On return from IO, current priority is boosted by driver-specific amount.
Subsequently, current priority decays by 1 after each completed quantum.

Also get boost for GUI threads awaiting input: current priority boosted to 14 for
one quantum (but quantum also doubled)

 Yes, this is true

On Workstation also get quantum stretching:

« ".. performance boost for the foreground application” (window with focus)
« Foreground thread gets double or triple quantum

ENVIRONMENTAL SUBSYSTEMS

« User-mode processes layered over the native NT executive services to enable NT
to run programs developed for other operating systems
¢ NT uses the Win32 subsystem as the main operating environment; Win32 is used
to start all processes. It also provides all the keyboard, mouse and graphical
display capabilities
¢ MS-DOS environment is provided by a Win32 application called the virtual dos
machine (VDM), a user-mode process that is paged and dispatched like any other
NT thread
e 16-Bit Windows Environment:
= Provided by a VDM that incorporates Windows on Windows
= Provides the Windows 3.1 kernel routines and stub routings for window
manager and GDI functions
e The POSIX subsystem is designed to run POSIX applications following the
POSIX.1 standard which is based on the Unix model

OBJECTS

Introduction

 Design Principles

e Design

o Objects

= Manager, Namespace

= Other Managers: Process, VM, Security Reference, 10, Cache
Filesystems

e Summary

(72,
Object Name @
\ Object Directory Process
Security Descriptor 3
i Quota Charges
%m&“ MM“ Open Handle Count
Open Handles List = i
Temporary/Permanent ﬂ.‘ pe QU\ ect
/ Type Object Pointer Type Name
Reference Count Common Info.
Methods:
. open
Object Object-Specfic Data Close
(perhaps including Delet:
WOQ* a kernel object) mmn“-w
Security
Query Name

In Unix, everything is a file — in NT, everything is an object

» Every resource in NT is represented by an (executive) object

» Kernel objects are re-exported at executive level by encapsulation

» Objects comprise a header and a body, and have a type (approximately 15 types
in total)
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THE OBJECT MANAGER

Responsible for:

« Creating and tracking objects and object handles. An object handle represents an
open object and is process-local, somewhat analogous to an fd
e Performing security checks

» Objects are manipulated by a standard set of methods, namely create, open,
close,delete, query name, parse and security. These are usually per
type ("class”) and hence implemented via indirection through the associated type
object. Not all will be valid (specified) for all object types

= handle
= result

open(objectname, accessmode)
service(handle, arguments)

» A process gets an object handle by creating an object, by opening an existing
one, by receiving a duplicated handle from another process, or by inheriting a
handle from a parent process

THE OBJECT NAMESPACE

Objects (optionally) have a name, temporary
or permanent, given via the NT executive

The Object Manger manages a hierarchical 3\\ //

driver\ device\ BaseNamedObjects\

namespace, shared between all processes. \ / !N -
The namespace is implemented via directory "

objects analogous to filesystem directories

¢ Floppy0\ Serial0\ HarddiskO\ >

c: coMi: / \ //

Partitionl\ Partition2\

/' \

Each object is protected by an access control
list. Naming domains (implemented via parse) mean filesystem namespaces can
be integrated

Object names structured like file path names in MS-DOS and Unix. Symbolic link
objects allow multiple names (aliases) for the same object. Modified view presented
at API level: the Win32 model has multiple "root" points (e.g.,C:, Dz, etc) so even
though was all nice & simple, gets screwed up

PROCESS MANAGER

Provides services for creating, deleting, and using threads and processes. Very
flexible:

e No built in concept of parent/child relationships or process hierarchies
» Processes and threads treated orthogonally

...thus can support Posix, 0S/2 and Win32 models

It's up to environmental subsystem that owns the process to handle any
hierarchical relationships (e.g. inheritance, cascading termination, etc)

e E.g., as noted above, in Win32: a process is started via the CreateProcess ()
function which loads any dynamic link libraries that are used by the process and
creates a primary thread; additional threads can be created by the
CreateThread () function

VIRTUAL MEMORY MANAGER

Assumes that the underlying hardware supports virtual to physical mapping, a
paging mechanism, transparent cache coherence on multiprocessor systems, and
virtual address aliasing. NT employs paged virtual memory management, The VMM
provides processes with services to:

¢ Allocate and free virtual memory via two step process: reserve a portion of the
process's address space, then commit the allocation by assigning space in the NT
paging file

* Modify per-page protections, in one of six states: valid, zeroed, free, standby,
modified and bad

« Share portions of memory using section objects (~software segments), based
verus non-based, as well as memory-mapped files

A section object is a region of [virtual] memory which can be shared, containing:
max size, page protection, paging file (or mapped file if mmap) and based vs non-
based (meaning does it need to appear at same address in all process address
spaces (based), or not (non-based)?)
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SECURITY REFERENCE MANAGER

NT's object-oriented nature enables a uniform mechanism for runtime access and
audit checks

 Every time a process opens handle to an object, check that process's security
token and object's ACL
¢ Compare with Unix (filesystem, networking, window system, shared memory, ...)

LOCAL PROCEDURE CALL FACILITY

Local Procedure Call (LPC) (or IPC) passes requests and results between client and
server processes within a single machine

« Used to request services from the various NT environmental subsystems
 Three variants of LPC channels:
1. small messages (<256 bytes): copy messages between processes
2. zero copy: avoid copying large messages by pointing to a shared memory
section object created for the channel
3. quick LPC: used by the graphical display portions of the Win32 subsystem

10 MANAGER

/0 Requests

v File

System
river

/0 Intermedi
Manager Driver

Device
Driver

The 10 Manager is responsible for file systems, cache management, device drivers

Keeps track of which installable file systems are loaded, manages buffers for 10
requests, and works with VMM to provide memory-mapped files

Controls the NT cache manager, which handles caching for the entire |0 system
(ignore network drivers for now)

10 OPERATIONS

Basic model is asynchronous:

e Each IO operation explicitly split into a request and a response
10 Request Packet (IRP) used to hold parameters, results, etc.

This allows high levels of flexibility in implementing IO type (can implement
synchronous blocking on top of asynchronous, other way round is not so easy)

Filesystem & device drivers are stackable (plug'n’play)
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CACHE MANAGER

« Caches "virtual blocks", keeping track of cache “lines" as offsets within a file
rather than a volume — disk layout & volume concept abstracted away
= No translation required for cache hit
= Can get more intelligent prefetching
o Completely unified cache:
= Cache "lines" all in virtual address space.
= Decouples physical & virtual cache systems: e.g. virtually cache in 256kB
blocks, physically cluster up to 64kB

FILESYSTEMS

Introduction
Design Principles
Design
Objects
Filesystems
= FAT16, FAT32, NTFS
= NTFS: Recovery, Fault Tolerance, Other Features

« NT virtual memory manager responsible for actually doing the |0 * Summary
= Allows lots of FS cache when VM system lightly loaded, little when system is
thrashing
o NT/2K also provides some user control:
= |f specify temporary attrib when creating file means it will never be flushed to
disk unless necessary
= [f specify write through attrib when opening a file means all writes will
synchronously complete
FILE SYSTEMS: FAT16 FILE SYSTEMS: FAT32
FAT16 (originally just "FAT") is a « Obvious extetension: instead of using 2 bytes per entry, FAT32 uses 4 bytes per
M Pisk Info| A floppy disk format from entry, so can support e.g. 8Gb partition with 4kB clusters
B Tor Atbut Bits Microsoft (1977) but was used  Further enhancements with FAT32 include:
mM .vV EMH“ ;wm: for hard-disks up to about 1996. = Can locate the root directory anywhere on the partition (in FAT16, the root
Fzee ressony It's quite a simple file system directory had to immediately follow the FAT(s))
e which basically uses the = (Can use the backup copy of the FAT instead of the default (more fault

"chaining in a map" technique
described in lectures to manage
files

File Size (4 B
n-1 Free ze (4 Bytes)

Afile is a linked list of clusters: a cluster is a set of 2" contiguous disk blocks,

n > 0. Each entry in the FAT contains either: the index of another entry within the
FAT, or a special value EOF meaning "end of file", or a special value Free meaning
“free”. Directory entries contain index into the FAT. FAT16 could only handle
partitions up to Awa X ¢) bytes means a max 2GB partition with 32kB clusters (and
big cluster size is bad)

tolerant)

= Improved support for demand paged executables (consider the 4kB default
cluster size)

= VFAT on top of FAT32 does long name support: unicode strings of up to 256
characters

= Want to keep same directory entry structure for compatibility with, e.g., DOS
S0 use multiple directory entries to contain successive parts of name

= Abuse V attribute to avoid listing these

Still pretty primitive...
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FILESYSTEMS: NTFS
i 0] $Mft
qamw\wmﬂhuw.\/ 1| $MftMirr File Record

2| $LogFile /

w MMMMMMMm \\ Mmz&mas‘owim:oa

5[\ / lename

6| $Bitmap Data...

7| $BadClus N
\
A\

15

16 | user file/directory
17| user file/directory

Fundamental structure of NTFS is a volume:

e Based on a logical disk partition
e May occupy a portion of a disk, and entire disk, or span across several disks

NTFS FORMAT

NTFS uses clusters as the underlying unit of disk allocation:

A cluster is a number of disk sectors that is a power of two

Because the cluster size is smaller than for the 16-bit FAT file system, the
amount of internal fragmentation is reduced

NTFS uses logical cluster numbers (LCNs) as disk addresses

The NTFS name space is organized by a hierarchy of directories; the index root
contains the top level of the B+ tree

An array of file records is stored in a special file called the Master File Table (MFT),
indexed by a file reference (a 64-bit unique identifier for a file). A file itself is a
structured object consisting of set of attribute/value pairs of variable length:

e Each file on an NTFS volume has a unique ID called a file reference: a 64-bit
quantity that consists of a 16-bit file number and a 48-bit sequence number

 used to perform internal consistency checks

« MFT indexed by file reference to get file record

NTFS: RECOVERY

To aid recovery, all file system data structure updates are performed inside
transactions:

» Before a data structure is altered, the transaction writes a log record that
contains redo and undo information

 After the data structure has been changed, a commit record is written to the log
to signify that the transaction succeeded

 After a crash, the file system can be restored to a consistent state by processing
the log records

Does not guarantee that all the user file data can be recovered after a crash — just
that metadata files will reflect some prior consistent state. The log is stored in the
third metadata file at the beginning of the volume ($Logfile):

« NT has a generic log file service that could be used by e.g. databases
» Makes for far quicker recovery after crash
e Modern Unix filesystems eg., ext 3, xfs use a similar scheme

NTFS: FAULT TOLERANCE

Hard Disk A Hard Disk B

Partition A1

Partition A2 Partition B1

Partition A3 Partition Bz

FtDisk driver allows multiple partitions be combined into a logical volume:

 Logically concatenate multiple disks to form a large logical volume, a volume set
Based on the concept of RAID = Redundant Array of Inexpensive Disks

E.g., RAID level O: interleave multiple partitions round-robin to form a stripe set
E.g., RAID level 1 increases robustness by using a mirror set: two equally sized
partitions on two disks with identical data contents

(Other more complex RAID levels also exist)

FtDisk can also handle sector sparing where the underlying SCSI disk supports it;
if not, NTFS supports s/w cluster remapping
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NTFS: OTHER FEATURES (1)

Security

 Security derived from the NT object model

« Each file object has a security descriptor attribute stored in its MFT record

 This atrribute contains the access token of the owner of the file plus an access
control list

Compression

« NTFS can divide a file's data into compression units (blocks of 16 contiguous
clusters) and supports sparse files
= Clusters with all zeros not allocated or stored
= Instead, gaps are left in the sequences of VCNs kept in the file record
= When reading a file, gaps cause NTFS to zero-fill that portion of the caller's
buffer

NTFS: OTHER FEATURES (1)

Encryption

« Use symmetric key to encrypt files; file attribute holds this key encrypted with
user public key
¢ Problems:
= Private key pretty easy to obtain; and
= Administrator can bypass entire thing anyhow

SUMMARY

Introduction
 Design Principles
e Design

e Objects
Filesystems

e Summary

SUMMARY

Main Windows NT features are:

Layered/modular architecture

Generic use of objects throughout

Multi-threaded processes & multiprocessor support
Asynchronous 10 subsystem

NTFS filing system (vastly superior to FAT32)
Preemptive priority-based scheduling

Design essentially more advanced than Unix.

¢ Implementation of lower levels (HAL, kernel & executive) actually rather decent
« But: has historically been crippled by

= Almost exclusive use of Win32 API

= Legacy device drivers (e.g. VXDs)

= Lack of demand for "advanced"” features
« Continues to evolve: Singularity, Drawbridge, Windows 10, ...

Dr Richard Mortier

IA Operating Systems, 2015/16 92/93




SUMMARY

Introduction
Design Principles
¢ Design
» Structural
= HAL, Kernel
= Processes and Threads, Scheduling
= Environmental Subsystems
¢ Objects
= Manager, Namespace
= Other Managers: Process, VM, Security Reference, 10, Cache
Filesystems
s FAT16, FAT32, NTFS
= NTFS: Recovery, Fault Tolerance, Other Features
e Summary
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